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Abstract

Source device identification is an important topic in image forensics since it allows to trace back the origin of an image.
Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for
identifying the source device. A typical trace exploited for source device identification is the photo response non-
uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology
for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn
PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework
followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator
and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing
and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still
maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained
on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image
under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases
are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on
publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.
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1 Introduction
Source device identification is a well-studied problem in
the multimedia forensics community [1–4]. Indeed, iden-
tifying the source camera of an image helps trace its origin
and verify its integrity. Many state-of-the-art techniques
tackle this problem by relying on photo response non-
uniformity (PRNU), which is a unique characteristic noise
pattern left by the device on each acquired content [1].
Given a query image and a candidate device, it is possible
to infer whether the device shot the image with a cross-
correlation test between a noise trace extracted from the
image and the device PRNU [5].
Despite the effort put into developing robust PRNU-

based source attribution techniques, the forensic com-
munity has also focused on studying the possibility of
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removing PRNU traces from images. On one hand, deter-
mining at which level PRNU can be removed is essential
to study the robustness of PRNU-based forensic detectors
and possibly improve them. On the other hand, linking
a picture to its owner is undesirable when privacy is a
concern. For example, photojournalists conducting legit
investigations may anonymize their shots to avoid being
threatened.
For these reasons, counter-forensic methods that enable

deleting or reducing PRNU traces from images have
been proposed in the literature. We can broadly split the
developed techniques into two families. The first fam-
ily requires the knowledge of the PRNU pattern to be
deleted, and we refer to them as PRNU-aware methods.
This is the case of [6–8], which propose different iterative
solutions to delete a known PRNU from a given pic-
ture. Specifically, [6] proposes an adaptive PRNU-based
image denoising, removing an estimate of the PRNU from
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each image. The authors of [7] estimate the best subtrac-
tion weight that minimizes the cross-correlation between
the PRNU and the trace extracted from the image to be
anonymized. Recently, [8] applies a convolutional neural
network (CNN), which exploits the source PRNU to hin-
der its traces from a query image. The network is used as
a parametric operator, which iteratively overfits the given
pair of image and PRNU, imposing a minimization of their
correlation.
The second family of methods works by blindly mod-

ifying pixel values to make the underlying PRNU unrec-
ognizable. For instance, [9] shows that multiple image
denoising steps can help attenuate the PRNU, even though
this may not be enough to ultimately hinder its traces
from images [10]. Alternatively, [11] applies seam-carving
to change pixel locations, and [12] exploits patch-match
techniques to scramble pixel positions. More recently,
[13] proposes an inpainting-based method that deletes
and reconstructs image pixels such that final images are
anonymized with respect to their source PRNU.
In this manuscript, we propose an image anonymization

tool leveraging a combination of a global optimization
strategy (i.e., operating on the entire image) and local
post-processing operations. In particular, global optimiza-
tion on the entire image is performed exploiting a CNN.
Given an image to be anonymized and a reference PRNU
trace to be removed, the proposed network iteratively gen-
erates multiple images where PRNU traces are attenuated,
still maintaining high visual quality. Differently frommost
CNN works, the proposed network does not need a train-
ing step. In fact, the used CNN exploits the deep image
prior (DIP) paradigm [14], thus acting as a framework
to solve an inverse problem: estimate PRNU-free images
from the picture under analysis and a reference PRNU
trace. The proposed CNN takes a random noise realiza-
tion as input and iterates until it is capable of generating
PRNU-free representations of a selected picture. The ana-
lyst can decide when to stop CNN iterations by simply
checking the trade-off between the quality of the gener-
ated images and the reached anonymization level. Then,
we propose to aggregate the CNN output images through
a post-processing step that works at the image local level.
In doing so, we achieve a remarkable enhancement con-
cerning both image quality and anonymization level at the
expense of little additional computational cost.
The developed anonymization scheme is validated on

1200 color images of the well-known Dresden Image
Database [15] and 600 color images of the Vision Source
Identification Dataset [16]. We address the anonymiza-
tion problem on both uncompressed images (i.e., images
selected from the DresdenDataset) and JPEG-compressed
images (i.e., Dresden and Vision Datasets). For the sake
of comparison with state-of-the-art techniques, we test
our methodology both when an estimate of the device

PRNU is available (i.e., in a PRNU-aware scenario) and
when the device PRNU can be estimated only from the
query image itself (i.e., in a PRNU-blind scenario). The
results show that the proposed technique hinders PRNU-
based detectors, especially when the actual device PRNU
is available.
The contributions of this paper can be summarized as

follows:

• We propose the first application of the DIP paradigm
to an image forensic problem, to the best of our
knowledge.

• We adapt the DIP denoising pipeline to work in case
of known multiplicative noise.

• We propose a PRNU-aware image anonymization
technique that outperforms the state-of-the-art on
the Dresden Dataset and is the runner-up on Vision.

• We propose a PRNU-blind image anonymization
technique that reduces PRNU traces around image
edges in contrast to other methods in the literature.

• We propose a method that allows forensic analysts to
select the trade-off between image quality and
anonymization capability depending on the working
scenario.

The rest of the paper is organized as follows. In
Section 2, we provide the reader with the background con-
cepts helpful in understanding the core of the proposed
methodology. In Section 3, we present the details of the
proposed scheme. In particular, we first define the inverse
problem we aim at solving, then we devise a processing
pipeline to obtain the target PRNU-free image. Finally, we
describe the architecture design along with the optimiza-
tion strategies. In Section 4, we describe the experimental
setup; in Section 5, we discuss all the achieved results,
compared with state-of-the-art solutions. Eventually, in
Section 6, we draw our conclusions.

2 Background and problem statement
In this section, we introduce some background concepts
helpful to understand the rest of the paper. First, we
introduce photo response non-uniformity (PRNU) and its
use in source device identification. Then, we present the
adopted methodology known as deep image prior (DIP)
[14], which has been recently proposed as a paradigm
to solve diverse inverse problems like image denoising.
Eventually, we formulate the source device anonymization
problem faced in this paper.

2.1 Photo response non-uniformity
Photo response non-uniformity (PRNU) is a character-
istic noise fingerprint introduced in all images acquired
by a device. Specifically, the PRNU K has the form of a
zero-mean pixel-wise multiplicative noise. According to
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the well-known model proposed in [1, 2], a generic image
I shot by a digital device can be described as:

I = I0 (1 + γK) + �, (1)

where I0 is the sensor output in the absence of noise, γ

is the weight of the PRNU contribution, and � includes
all the additional independent random noise components.
The PRNU K can be estimated by collecting a set of
images shot by the device, following the method proposed
in [1, 2].
PRNU K is commonly used to solve source device iden-

tification problem, that is, given a query image I and a
candidate device, understanding if the device shot that
image or not. One way to solve the problem is to com-
pute the normalized cross-correlation (NCC) [1] between
a noise residual W [2] extracted from the query image I
and the PRNUK of the candidate device, pixel-wise scaled
by I. Referring to [1], we can define the NCC as:

NCC(W, IK) =
∑

i,j[W]i,j ·[ IK]i,j
‖W‖F · ‖IK‖F , (2)

where ||·||F is the Frobenius norm, while [W]i,j and [ IK]i,j
are the terms in position (i, j) of W and IK, respectively.
If NCC(W, IK) is greater than a predefined threshold,
the image can be attributed to the device with a certain
confidence.

2.2 Deep image prior
A generic image restoration problem is usually solved
through the minimization of an objective function of the
form

J(x) = E(x; I) + λR(x), (3)

where E(x; I) is a task-dependent misfit function condi-
tioned by the (corrupted) input image I, and R(x) is a
regularization term designed to tackle the ill-posedness
and ill-conditioning of the inverse problem. To avoid con-
fusion with the rest of notation used in the paper, we refer
at x as a generic image which the cost function is evaluated
for. λ is a weight setting the trade-off between honoring
the data and imposing the desired a-priori features [17].
The restored image x̂ is then obtained as:

x̂ = argmin
x

J(x). (4)

The data misfit E(x; I) is usually quite simple to devise,
depending on the desired task. The design of a regular-
ization term R(x) can be challenging because it should
capture the features of the desired image.
Deep image prior (DIP) has been proposed as an alter-

native solution with respect to standard regularization
[14]. The objective function to minimize is recast as:

J(φ) = E(x; I) = E(fφ(z); I), (5)

where fφ(·) is a CNN represented as a parametric non lin-
ear function, φ are the parameters of this function (i.e.,
the weights of the CNN), and z is a random noise realiza-
tion. The value fφ(z) is associated with the output image to
the network; thus, it is related to a random noise realiza-
tion z and to the CNN parameters φ. Notice that there is
not an explicit regularization term: the CNN architecture
itself plays the role of the prior. Through its convolutional
layers, the CNN captures the inner structure and self-
similarities of the desired uncorrupted image from the
input corrupted one and constraints the solution space. In
other words, instead of minimizing the objective function
in the space of the image as in (4), DIP performs the search
in the space of the CNN parameters φ. This dramatically
changes the shape of the objective function, driving the
solution to honor both the data misfit and the deep fea-
tures captured on the corrupted input image. The restored
image is then obtained as:

x̂ = f
φ̂
(z), (6)

where

φ̂ = argmin
φ

J(φ). (7)

For the specific case of image denoising, the DIP objec-
tive function presented in (5) is customary set to the �2
distance between the output image to the CNN for a given
combination of noise realization z and network parame-
ters φ, defined as fφ(z), and the input image I [18–20]. For
the sake of notation, from now on, we refer to the CNN
output image fφ(z) as Iφ . Therefore, (5) becomes:

J(φ) = ∥
∥Iφ − I

∥
∥2
2 . (8)

One may ask why a CNN that is designed to recon-
struct a generic image should perform denoising while
its goal is set to fit the input (noisy) image I. The main
reason is the different behavior of signal and noise com-
ponents throughout the iterative optimization [21]. If the
minimization is led to convergence, the result will indeed
fit the noisy image. Still, the authors of [14] have shown
that parametrizing the optimization via the weights of a
CNN generator distorts the search space so that in the
minimization process, the signal fits faster than the noise.
Therefore, [14] proposes to perform denoising by early
stopping the iterative minimization. For example, in a
forensic scenario, the analyst can stop the optimization
when some task-specific average metrics reach a desirable
value.

2.3 Problem formulation
This paper focuses on the forensics counterpart of the
source device identification problem, that is, performing
source device anonymization. Specifically, given an image,
we aim at hindering PRNU traces left on the image to
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make it impossible to associate the image with its source
device. Meanwhile, the anonymization process should not
compromise the visual quality of the anonymized image.
This translates into fulfilling two main goals:

1. The NCC between the anonymized image and the
actual source PRNU should be lower than a
predefined threshold.

2. The peak-signal-to-noise-ratio (PSNR) between the
anonymized image and the original image should
assume high values.

To this purpose, we propose the Deep Image Prior
PRNU Anonymization Scheme (DIPPAS), which is an
anonymization method based on a DIP optimization
framework followed by a local post-processing and assem-
bly operations studied on purpose. In the next section,
we present the proposed strategy, discussing the central
intuitions behind the approach.

3 Proposedmethodology
The proposed method for image anonymization works in
two main steps: a DIP-based approach is adapted to gen-
erate multiple images with limited PRNU traces; these
images are combined into a single one through a post-
processing scheme.
To illustrate all the details of the proposed approach, in

this section, we start showing the theoretical DIP-based
framework chosen for our specific problem. Then, we
explain how it is possible to generate an image using this
framework. We then report the details of the developed
post-processing scheme that merge multiple images into
one. Finally, we describe the employed CNN architecture.

3.1 DIP-based image generation
Considering the model (1) of a generic image I acquired
by a digital device, the anonymization task consists in
estimating the ideal PRNU-free image I0. Indeed, I0 is
completely uncorrelated from the device PRNU, and it has
a reasonably good visual quality. We aim at this goal by
combining the DIP denoising paradigm of (8) with the
PRNU-based image modeling proposed in (1). Iφ = fφ(z)
being the output of the CNN for a given parameter con-
figuration φ and z a noise realization, the functional to be
minimized becomes:

J(φ) = ∥
∥Iφ (1 + γP) − I

∥
∥2
F . (9)

We defineP as the device fingerprint that can be either the
estimated PRNU pattern (i.e., P = K) or the noise residual
W extracted from I as suggested in [2].
The former situation is a PRNU-aware scenario (e.g.,

users want to anonymize their pictures and know the ref-
erence PRNU). In this case, the proposed scheme makes

use of the PRNU K as the fingerprint P; hence, (9)
becomes:

J(φ) = ∥
∥Iφ (1 + γK) − I

∥
∥2
F . (10)

The latter situation is a PRNU-blind scenario (e.g., a
website wants to store anonymized images uploaded by
users, but each reference PRNU is not known at server-
side). In this case, the fingerprint Pwe inject in the inverse
problem is the noise residualW extracted from I itself [2];
hence, (9) becomes:

J(φ) = ∥
∥Iφ (1 + γW) − I

∥
∥2
F . (11)

Notice that the term Iφ (1 + γP) emulates the image
modeling shown in (1) (correctly if P = K, approxi-
mately if P = W). The more Iφ (1 + γP) approaches I
in terms of Frobenius norm, the more Iφ will represent a
reasonably better estimate of the ideal PRNU-free image
I0, apart from independent random noise contributions.
Given these premises, the estimated image Iφ is a good
candidate for the anonymization of the input image I.
In a nutshell, the proposed strategy is depicted in Fig. 1.

Starting from image I, we extract the device noise residual
P either in PRNU-aware or PRNU-blind scenario. Then,
we generate the image Iφ following the DIP paradigm,
i.e., imposing the fingerprint-injected image Iφ (1 + γP)

to be as similar as possible to the known image I. By min-
imizing the functional (9), we estimate the image Iφ with
attenuated fingerprint traces.

3.2 Generation of PRNU-attenuated images
As we previously reported, the proposed DIP process can
generate multiple images with attenuated PRNU traces.
Referring to Fig. 1, the generation pipeline is the following:

1. The CNN input tensor z is a realization of a
zero-mean white Gaussian noise, with the same size
of image I. We found uniform distributions to be less
effective; we are convinced the Gaussian noise is able
to excite the deep prior layers in a broader range of
values, producing better images.

2. We optimize the weights of the CNN by
minimizing (9). The optimization is performed over
the generator weights φ. Notice that the PRNU
injection weight γ acts as a trainable architecture
layer, so γ is estimated directly during the inversion.
Specifically, γ is clamped to be positive, as negative γ

values are not model representative.
3. At each minimization step, we generate an image Iφ ,

which is saved only if the PSNR with respect to the
original image I is above a certain threshold τPSNR.
This is done to guarantee a sufficiently good visual
quality for the generated image.
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Fig. 1 The proposed DIP-based image generation process. The known data are the acquired image I and the device fingerprint P. During the
inversion, the traces of P are attenuated by injecting P into the image Iφ generated by the CNN. In the PRNU-aware setup, P = K; in the PRNU-blind
setup, P = W, a noise residual extracted from I [2]

The minimization process ends when the PSNR
between the generated image Iφ , and the initial image
I overcomes a threshold of 39 dB. The maximum num-
ber of iterations is anyway fixed to 10,000. In doing so,
after the DIP process ends, a pool of M generated images
Iφ (m),m ∈[ 1,M] with PSNR ≥ τPSNR has been collected.
For the sake of clarity, Figs. 2 and 3 report one example of
the inversion process, showing the evolution of the CNN-
generated images, together with their PSNRs with respect
to the original image and NCCs with the source device
PRNU.

3.3 Local post-processing and assembly
Notice that the DIP minimization functional Eq. (9)
imposes a constraint on the Frobenius norm of the dif-
ference between the fingerprint-injected image and the
initial image. This constraint represents a global con-
straint as it does not explicitly focus on local pixel areas.
Recalling our final goals (i.e., maximizing the PSNR and
minimizing the NCC of the anonymized image), while the
PSNR is a global metric as it considers the entire image
and not local areas, the NCC can strongly depend on spe-

cific local regions of the image, which can correlate with
the device PRNU in diverse fashions.
Moreover, as DIP iterations increase, the minimiza-

tion process risks injecting an excessive amount of PRNU
traces in the generated images. This is noticeable from the
examples depicted in Figs. 2 and 3: when iterations’ num-
ber grows, the PSNR of the generated images improves
but their NCC can slightly grow as well, resulting in worse
anonymization.
Given these premises, we propose to further optimize

our solution by investigating the M generated images on
their local areas. We improve upon these results with a
very straightforward methodology to generate one final
anonymized image out of the M previously generated
ones by locally optimizing the cross-correlation with the
reference device fingerprint P.
Specifically, Fig. 4 depicts the proposed pipeline: we

divide each available image Iφ (m) and the reference fin-
gerprint P into Nb non overlapping squared blocks of
B × B pixels. Image and fingerprint blocks are defined as
[ Iφ (m)]b and [P]b , b ∈[ 1,Nb], respectively. Notice that,
for each block geometric position b, we have M available

Fig. 2 NCC and PSNR behavior of generated images as a function of DIP iterations. Some generated images are depicted in Fig. 3
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Fig. 3 DIP inversion example: as iterations increase, the reconstructed images pass from a noisy behavior (i.e., iteration 1) to a very similar copy of
the original image. However, as PSNR, NCC can slightly grow as well

image blocks associated with the M image realizations
produced during the DIP iterations. For each block posi-
tion b, three main steps follow:

1. We compute the NCCs between the M image blocks
[ Iφ (m)]b ,m ∈[ 1,M] and the fingerprint block [P]b
as in (2).

2. The available M blocks are ordered accordingly to
their resulting NCCs: first, we select the blocks with
negative NCC and increasing absolute value;
secondly, we select the blocks with positive NCC and
increasing absolute value. In doing so, blocks with
low absolute NCC and negative NCC are given
higher priority than blocks returning bigger NCCs.

3. Following the order specified above, we average the
first L blocks pixel by pixel, ending up with a B × B
final reconstructed block.

The final anonymized image Î is estimated by assembling
the results obtained for each single block position b and
color channel.

3.4 CNN architecture
The U-Net is a convolutional autoencoder (i.e., a CNN
aiming at reconstructing a processed version of its input)

characterized by the so-called skip-connections and orig-
inally introduced for medical image processing [22]. If
properly trained according to the standard deep learning
paradigm, it proves very effective for multidimensional
signal processing tasks such as denoising [23, 24], interpo-
lation [25, 26], segmentation [27, 28], inpainting [29], and
domain-specific post-processing operators [30, 31].
More recently, the multi-resolution U-Net [32] has been

proposed for multimodal medical image segmentation,
based on the consideration that the targets of interest
have different shapes and scales. Working at different
scales can be strongly beneficial if we want to capture
self-similarities of natural images as a prior. Preliminary
experiments on a small dataset led us to adopt such archi-
tecture rather than traditional U-Net and its derivations
analyzed in [14].
Therefore, we propose an ad hoc multi-resolution U-

Net (shown in Fig. 5) that can be summarized as follows:

1. Convolutional layers are replaced by the so-called
multi-resolution blocks shown in the bottom-right
portion of Fig. 5. These blocks approximate
multi-scale features of the inception block [33] while
limiting the number of parameters of the network,
which is critical when employing it as a deep prior.

Fig. 4 Assembly of the anonymized image. For each generated image Iφ (m) , Nb blocks are extracted from the image and the fingerprint P. Fixing a
block position b, we compute the NCC between each pair of blocks [ Iφ (m)]b , [P]b ,m ∈[ 1,M]. Then, we order theM image blocks according to their
resulting NCCs, and we average the first L blocks pixel by pixel, obtaining the estimated block [ Î]b . We follow this pipeline for each block position b,
eventually assembling the results and estimating the anonymized image Î
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Fig. 5 Proposed multi-resolution U-Net architecture

Every block is a chain of three convolutions; the final
output is the sum of the input, scaled by a learned
factor, and the stack of the three partial outputs.

2. Skip connections, which are the distinctive feature of
the U-Net, are replaced by residual path blocks shown
in the bottom-left portion of Fig. 5, as proposed in
[32]. E is the output of an encoding layer, and D is
concatenated to the corresponding decoding layer.

3. Downsampling is achieved by 3 × 3 convolutions
with stride 2 × 2. Upsampling is performed by
nearest neighbour interpolation. Batch normalization
and LeakyReLU activation follow every convolution
apart from the last one (i.e., the CNN output) that is
activated by a sigmoid.

Notice that, even though the result is the output of a
CNN, the DIP method does not exploit the typical deep
learning paradigm where a training phase is performed
over a specifically designed set of data. In particular, only
the query image is used in the reconstruction process, and
the CNN implicitly assumes the role of prior information
that exploits correlations in the image to learn its inner
structure.

4 Experiments
This section describes the used datasets, the experimental
setup, and the evaluation metrics.

4.1 Datasets
We resort to two well-known datasets commonly used
for investigating PRNU-related problems on images. The
first dataset is the Dresden Image Database [15], which
collects both uncompressed and compressed images from

more than 50 various devices. Following the same proce-
dure done in past works proposed in literature [12, 13], we
select images from 6 different camera instances, precisely
Nikon D70, Nikon D70s, and Nikon D200, two devices
each. The second dataset is the recently released Vision
Dataset [16], which includes JPEG compressed images
captured from 35 devices. Among the pool of available
models, we collect images from 6 different camera ven-
dors, precisely from devices named as D12, D17, D19,
D21, D24, and D27 in [16].
The PRNU fingerprint of each device is computed by

collecting all the available flat-field images shot by the
device and following the maximum likelihood estima-
tion proposed in [2]. Concerning the Dresden Dataset,
we exploit never-compressed Adobe Lightroom images to
compute the PRNU, as it reasonably is the most accurate
way to estimate the device fingerprint. Indeed, JPEG com-
pression can create blockiness artifacts that may hinder
PRNU estimation [2]. Every device includes 25 homo-
geneously lit flat-field images for the PRNU estimation.
For the Vision Dataset, each device fingerprint has been
computed on more than 95 JPEG flat-content images.
The images to be anonymized are selected from nat-

ural images; precisely, we pick 100 natural images per
device. Regarding the Dresden Dataset, two different
sub-sets can be extracted. For every device, we select
100 never-compressed Adobe Lightroom images, together
with other 100 taken from the pool of JPEG compressed
images. We end up with three distinct datasets compris-
ing 600 images each: the Dresden uncompressed dataset,
calledDu; the Dresden compressed dataset, defined asDc;
and the Vision (compressed) dataset, V .



Picetti et al. EURASIP Journal on Information Security          (2022) 2022:2 Page 8 of 17

4.2 State-of-the-art solutions
We select the most recent anonymization methods pro-
posed in the literature as state-of-the-art solutions.
Among the pool of PRNU-aware methods, we imple-

ment the method proposed in [6], being the most recent
and cited contribution. We do not compare our solution
with the PRNU-aware strategy recently proposed in [8],
as its performance drops significantly whenever the used
image denoising operator during cross-correlation tests
is the commonly used one suggested in [1, 2]. Since in
our proposed strategy we follow the methodology devised
in [1, 2] for image denoising and cross-correlation, a
comparison with [8] would be unfair.
Regarding PRNU-blind strategies, the most recent con-

tribution is that proposed by us in [13], which demon-
strates to outperform results of [12] in a PRNU-blind
scenario. For the implementation of [13], we consider the
parameter configurations achieving the best anonymiza-
tion results, i.e., the strategies defined as �

(3)
1 and �

(5)
1 in

the original paper.
Moreover, to show that simple denoising does not

achieve good anonymization performances [10], we
implement the well-known DnCNN denoiser [23] which
represents a modern data-driven solution among image
denoising strategies.

4.3 Experimental setup
Considering what was done in the past state-of-the-art
[13], our experiments process images of 512 × 512 pix-
els with 512 features extracted at the first MultiRes block.
To do so, we center-crop all the images and the com-
puted PRNUs to a common resolution of 512×512 pixels.
The optimization is performed through the ADAM algo-
rithm with a learning rate of 0.001. At each iteration, we
perturb the CNN input noise z with additive white Gaus-
sian noise with standard deviation 0.1 to strengthen the
convergence. This way, the network is more robust with
respect to the specific noise realization, and it is forced
to learn higher-level features. Without any specific code
optimization, we reach a computation speed of 5 itera-
tions per second on an Nvidia Tesla V100 GPU, requiring
8 GB of GPU memory.
Concerning the proposed local post-processing and

assembly in Section 3.3, notice that the amount of M
available images at the output of DIP process changes
accordingly to the input image and the PSNR requirement.
Typical values are between 500 and 2500 images. The
computational impact of the post-processing is mainly
due to the Wiener filter that estimates the noise resid-
ual on all the M images. It is worth noticing that the vast
majority of images need few iterations (less than 3000 iter-
ations over 10,000 possible cycles, on average) to achieve
the threshold of 39 dB chosen to stop the inversion. We
consider multiple parameter configurations to include a

sufficiently broad pool of investigation cases. The block
sizeB can be chosen amongB =[ 32, 64, 128, 256, 512] pix-
els, and themaximumnumber of averaged blocks can vary
as well, being L =[ 1, 5, 10, 25, 50, 75, 100]. Notice that the
case B = 512 corresponds to select the full image, without
dividing it into blocks. It is worth noticing that the con-
figuration {L = 1,B = 512} coincides with the absence of
the local area post-processing proposed in Section 3.3.

4.4 Evaluation metrics
After the generation of the anonymized image Î, we com-
pute the NCC between Î and the source device PRNU
K, together with the PSNR between Î and the original
image I. These values are the used metrics for evaluating
the results and comparing them with state-of-the-art. The
lower the achieved NCC together with a high PSNR, the
better the image anonymization performance.
To summarize the results related to the achieved NCCs,

we make use of receiver operating characteristic (ROC)
curves related to the source device identification prob-
lem. Given a fixed device PRNU K, NCCs of anonymized
images taken with that device are defined as the posi-
tive set, while NCCs of images shot by other cameras are
the negative set. Anonymization performance is evaluated
through the area under the curve (AUC), as done in [8,
12, 13]. Our goal is to reduce the AUC of the curves, thus
making the PRNU-based identification not working, at the
same time maintaining high values of PSNR.
Finally, we propose a synthetic metric to summarize the

trade-off between the image quality, measured by PSNR,
and the anonymization level reached in terms of AUC.
Specifically, the proposed trade-off metric C is computed
as follows:

C = PSNR (1 − 2|AUC − 0.5|) , (12)

where | · | is the absolute value, the term inside the brack-
ets is 0 if the AUC is 1 (i.e., no anonymization) or 1 if the
AUC is 0.5 (i.e., perfect anonymization). This anonymiza-
tion measure is then scaled by the visual quality factor,
i.e., the PSNR. The higher the metric, the better the
quality/anonymization trade-off.

5 Results and discussion
In this section, we provide the numerical results achieved
with our experimental campaign that demonstrate the
capability and limitations of our methodology. First, we
deploy our method when the reference PRNU of the
device is available at the analyst (i.e., P = K). Then, we
show that our method can also be applied in the case of
blind anonymization when the PRNU K is unknown (i.e.,
P = W). The results are compared with state-of-the-art
techniques to highlight the pros and cons.
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5.1 PRNU-aware anonymization
In this scenario, the actual PRNU of the source device to
be anonymized is known. The results are shown in terms
of PSNR and AUC of the ROC curves for the three inves-
tigated datasets. Figures 6, 7, and 8 refer to datasets Du,
Dc, and V , respectively. For the sake of clarity in the fol-
lowing discussion, the results for L = 25 and L = 75
are not depicted in these plots. It is important to notice
that the results must be analyzed by watching PSNR and
AUC concurrently. Indeed, high PSNR is a good result
only if paired with low AUC.We, therefore, privilege solu-
tions providing a good PSNR/AUC trade-off. To ease the
readability of the reported results, we separately analyze
the performance of each PRNU-anonymizationmethod in
brief paragraphs.

5.1.1 Proposed DIPPASmethod
For all the investigated datasets, the proposed method
is able to achieve PSNRs greater than 38 dB, provided
that a sufficiently high threshold τPSNR is chosen. Also, in

terms of AUCs, the proposed method can cover a wide
range of possibilities, according to the chosen block size
B and the amount of averaged blocks L. It is worth notic-
ing that the application of local post-processing presented
in Section 3.3 allows an improvement of the results in
all the three scenarios. The DIP approach alone, which
corresponds to configuration {L = 1,B = 512}, often
shows low PSNRs and too high AUCs. Instead, by working
on smaller image blocks, both PSNR and AUC improve,
even without averaging multiple blocks together (i.e., with
L = 1).
In general, the smaller the block size B, the better

the PSNR achieved, even though this behavior seems to
attenuate for high values of τPSNR. Besides, the more the
amount of averaged blocks L, the better the achieved
PSNR. Regarding Dresden-related datasets, middle values
of L seem to work better for achieving good AUCs, while
dataset V requires higher values of L for lowering the
AUC. The achieved AUCs are better on Dresden-related
datasets, i.e., Figs. 6 and 7. For these two datasets, none of

Fig. 6 PRNU-aware anonymization results for theDu dataset
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Fig. 7 PRNU-aware anonymization results for theDc dataset

the state-of-the-art works outperforms the best DIPPAS
results, while the V dataset seems to be more challenging
to be anonymized.

5.1.2 Proposedmethod in [6]
The solution provided by [6] achieves the best results
in terms of PSNR for all three datasets. However, notice
that the corresponding AUCs show inferior results if com-
pared with DIPPAS and [13] for Dresden-related datasets.
Concerning the dataset V shown in Fig. 8, the AUC
obtained by [6] seems to outperform every proposed strat-
egy.
We think this different behavior can be explained by

the diverse nature of Vision dataset with respect to
Dresden. Indeed, in dataset V the device PRNU is esti-
mated directly from JPEG-compressed images, while in
Dresden-based datasets the PRNU is estimated from
uncompressed ones. As a matter of fact, the PRNU esti-
mated from JPEG-compressed images can present arti-
facts due to JPEG compression, which can also contribute

to hinder the subtle sensor traces left on images [2]. As
a consequence, anonymizing JPEG-compressed images
with respect to the PRNU estimated from uncompressed
data can be slightly more complicated than anonymiz-
ing JPEG images with respect to the PRNU estimated
from JPEG data. In this vein, the strategy proposed
by [6] seems to work in a very accurate way only if
the device PRNU is estimated from JPEG-compressed
images.

5.1.3 Proposedmethod in [13]
The proposed strategy in [13] achieves acceptable values
of PSNRs in all the considered datasets, actually compa-
rable to those achieved by DIPPAS. The resulting AUCs
show satisfying values as well, except for the Vision-
related dataset, where [13] seems to suffer more with
respect to Dresden-related datasets, following a similar
trend to that previously shown by the DIPPAS method.
Regardless, notice that DIPPAS can outperform the AUCs
achieved by [13] in all three datasets.
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Fig. 8 PRNU-aware anonymization results for the V dataset

Fig. 9 PRNU-aware anonymization for an image of theDc dataset, comparing our proposed strategy with [13], [6], and DnCNN
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Fig. 10 PRNU-aware anonymization results, reported in terms of AUC as a function of average PSNR achieved by three DIPPAS configurations for the
Du dataset (left), theDc dataset (center): the V dataset (right). We compare our proposed strategy with [13] �(3)

1 (yellow ), [13] �(5)
1 (purple ), and

[6] (green )

5.1.4 Proposedmethod in [23]
The DnCNN solution proposed in [23] shows small val-
ues of PSNRs in all the experiments. Furthermore, the
achieved results are too high AUCs, which are unaccept-
able for good image anonymization. The DnCNN results
seem to confirm that this simple image denoiser can-
not accurately delete PRNU traces [10], leading to poor
anonymization performances.
Figure 9 reports an example of anonymization per-

formed over an image ofDc dataset.We depict the original
image and its anonymized versions exploitingDIPPAS and
the methods of [13], [6], and DnCNN [23]. Specifically,
we choose the best performing DIPPAS parameter config-
uration in terms of both PSNR and AUC, i.e., {τPSNR =
38,B = 64, L = 10}; we select this configuration by refer-
ring to results shown in Fig. 7. Zooming in the images (red
squared area), we can visually notice that the best results
are obtained by DIPPAS and [6]; the DnCNN results in a
heavily smoothed image, while [13] introduces some edge
artifacts. The method devised in [6] can halve the original
NCC, while DIPPAS dramatically scales the original NCC
value by a factor of 0.002.
To summarize the previously reported results, Fig. 10

shows the behavior of AUC as a function of the average

Table 1 Trade-off metric C for the PRNU-aware anonymization
onDu

Setup C
DIPPASB=32,L=10,τPSNR=35 36.15

DIPPASB=32,L=10,τPSNR=37 34.04

DIPPASB=32,L=50,τPSNR=38 29.07

[13], �(3)
1 30.97

[13], �(5)
1 33.13

[6] 15.69

PSNR achieved by DIPPAS in three selected parameter
configurations. We compare our results with state-of-the-
art as well. The best working condition consists of high
PSNR and low AUC; however, a trade-off exists between
good visual quality and high anonymization. Such trade-
off is expressed by a synthetic metric in Eq.( 12), whose
values for the three datasets are reported in Tables 1, 2,
and 3. It is possible to notice that DIPPAS provides the
best trade-off on the Dresden dataset and the second-best
one on Vision. In this latter scenario, the best trade-off is
provided by [6], which, however reports inferior results on
the Dresden dataset.

5.2 PRNU-blind anonymization
In this scenario, the actual device PRNU is unknown.
Therefore, the reference device fingerprint used during
the DIP inversion and the blocks assembly corresponds to
the noise residual extracted from the image, i.e., P = W.
As previously done, we report the PSNR and AUC of the
ROC curves for all three investigated datasets. Figures 11,
12, and 13 depict the results for datasets Du, Dc, and V ,
respectively. For the sake of clarity in the following discus-
sion, the results for L = 25 and L = 75 are not depicted in
these plots.

Table 2 Trade-off metric C for the PRNU-aware anonymization
onDc

Setup C
DIPPASB=64,L=10,τPSNR=38 36.95

DIPPASB=128,L=75,τPSNR=37 36.07

DIPPASB=128,L=50,τPSNR=36 36.55

[13], �(3)
1 35.68

[13], �(5)
1 33.26

[6] 29.13
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Table 3 Trade-off metric C for the PRNU-aware anonymization
on V
Setup C
DIPPASB=32,L=100,τPSNR=35 24.38

DIPPASB=32,L=50,τPSNR=37 20.91

DIPPASB=32,L=25,τPSNR=38 18.44

[13], �(3)
1 19.72

[13], �(5)
1 24.14

[6] 29.74

In terms of PSNR, on the Vision Dataset, we can out-
perform [13], while for the Dresden Dataset, we achieve
slightly lower results. Moreover, DIPPAS achieves slightly
higher AUCs than state-of-the-art solutions. Notice that
the best AUC values are obtained for L = 1, i.e., without
performing block averaging.
We think this less effective anonymization with respect

to the previous PRNU-aware scenario can be due to the

assumption done during the DIP inversion (9) to esti-
mate the anonymized image. As a matter of fact, the
DIP paradigm leverages the PRNU-based image model-
ing reported in (1). Whenever the PRNU estimate K is
unknown and the noise residual W is used instead, as
reported in (11), the model is not clearly satisfied and the
DIP solution will be sub-optimum. For this reason, in a
PRNU-blind scenario, DIPPAS is still able to achieve good
performance in terms of PSNR, but the AUC is not as
good as in the PRNU-aware scenario.
From these results, it may seem that DIPPAS cannot

achieve better results than [13], but an important point
has to be noticed. Indeed, [13] applies different pro-
cessing to edges and flat regions, thus removing PRNU
traces in concentrated local areas. Precisely, notice that
method [13] works in two separate steps: (i) estimate
an anonymized version of the image exploiting inpaint-
ing techniques and (ii) substitute a denoised version of
the edges extracted from the original image into the
anonymized image to enhance the output visual quality.
In light of these considerations, we think that the edge

Fig. 11 PRNU-blind anonymization results for theDu dataset
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Fig. 12 PRNU-blind anonymization results for theDc dataset

processing operation performed on the output image can
be the weak link in the proposed pipeline of [13]. Indeed,
image edges only undergo two successive steps of BM3D
denoising algorithm [34]; thus, they reasonably contain
enough PRNU traces for performing source attribution, as
suggested in [10].
Therefore, we compare DIPPAS and [13] only along the

image edges, extracted following the same pipeline pro-
posed in [13]. For every dataset, we evaluate the DIPPAS
results for a parameter configuration which returns the
nearest PSNR value to that achieved by [13]. For instance,
looking at Fig. 11, datasetDu is evaluated for {B = 32, L =
100, τPSNR = 38} if compared to [13], �

(3)
1 ; we use {B =

512, L = 10, τPSNR = 37} when comparing to [13], �(5)
1 .

We compare the results in terms of relative change
of AUC evaluated over image edges with respect to the
AUC achieved on the full image. In a nutshell, the rel-
ative change in AUC can be computed as (AUCedges −
AUC)/AUC, being AUC the metrics associated to the full
image. Table 4 reports the results. Notice that the relative

AUC change maintains a coherent behavior for all three
datasets. On one side, [13] always reports a positive rela-
tive change; on the other side, DIPPAS presents a negative
relative change.
DIPPAS results are coherent with what happens on nat-

ural images when compared with the PRNU in a reduced
region (e.g., only along the edges). Indeed, the NCC drops
as the image content is reduced. Thus, the AUC of the
source attribution problem decreases. On the contrary,
the accuracy of [13] evaluated only along image edges
firmly drops as the NCC increases, with a consequent
AUC growth. The previously reported consideration can
explain this phenomenon, that is, [13] performs only
denoising along the edges, and this is usually not enough
to hinder PRNU traces [10].
As a consequence, the anonymization algorithm pro-

posed in [13] can be easily spotted and defeated just by
analyzing image edges. In contrast, the suggested DIPPAS
solution does not present this drawback. Even if an analyst
only uses edges for PRNU-based attribution, the image
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Fig. 13 PRNU-blind anonymization results for the V dataset

would look anonymized. This is an additional advantage
of the DIPPAS technique.

5.3 Computational cost
In the following, and the revised manuscript, we report
the computation time of single image anonymization,
taken from Du dataset, in the case of PRNU-aware sce-
nario.
The machine is a dual-socket workstation equipped

with Intel Xeon Gold 6246 CPUs, 256 GB of memory, and
a single Nvidia Tesla V100 PCIe GP-GPU. The operative
system is Ubuntu Server 20.04 LTS. Although the devel-
oped code is parallelized over all the available cores, we
report the CPU time in user mode.
First of all, the image generation through deep priors

took 4262 iterations to reach the PSNR stopping threshold
of 42 dB, for a total time of ≈ 850s (0.2s/it).
Having set τPSNR = 38 dB, the number of generated

images is M = 1355. Table 5 reports the computa-
tion time of the noise extraction step (first row) and
the post-processing step (subsequent rows) for two val-

ues of block size B = 512 (i.e., full image), and B =
64 (i.e, 16 blocks per image). It is worth noticing that,
for both values of B, extracting the noise through the
Wiener filter takes an order of magnitude more than the
NCC sorting and merging operations. Moreover, vary-
ing L does not significantly impact the computation time,
which is practically affected by input/output operations
only.
Skipping the post-processing means computing the

NCC (with B = 512) for images that have a PSNR ≥
τPSNR and taking the image associated with the minimum
absolute value of the NCC. Indeed, randomly selecting
an image such that PSNR ≥ τPSNR does not guarantee
that the associated NCC will be enough to fool a device
attribution test, as depicted in Fig. 2.
Either way, the bottleneck of the proposed methodology

is the NCC computation, which the final image building
depends on. This limitation can be overcome by incorpo-
rating a reliable NCC term in the loss function. In the light
of these results, we can state that post-processing helps
the anonymization.
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Table 4 AUC relative change on image edges, for PRNU-blind
anonymization

NCC area [13], �(3)
1 DIPPAS NCC area [13], �(5)

1 DIPPAS

Vedges +11.6% −9.1% Vedges +22.3% −9.9%

Duedges +10.9% −17.8% Duedges +19.1% −19.1%

Dcedges +8.7% −17.6% Dcedges +6.1% −17.7%

6 Conclusions
In this manuscript, we propose a source device
anonymization scheme that leverages the deep image
prior (DIP) paradigm to attenuate PRNU traces in nat-
ural images, paired with a post-processing scheme that
exploits multiple images. With this method, a CNN learns
to generate images from noise realizations iteratively.
Specifically, at each DIP iteration: (i) the CNN generates
an image; (ii) we inject the device PRNU into this image;
(iii) we minimize the distance between the input query
image and the PRNU-injected image. In doing so, we
can generate multiple images with a strongly attenuated
PRNU pattern and high visual quality. Finally, we devise
an efficient post-processing operation for assembling the
final anonymized image from the CNN outputs realized
at different iterations.
We compare our method against state-of-the-art

anonymization schemes through numerical examples. In
particular, when the PRNU of the device is available, we
achieve our best results. Our scheme can be general-
ized to the case of blind anonymization, i.e., when the
device PRNU is unknown, and only a noise residual can
be extracted from the query image and then injected into
the DIP generation process.
Not surprisingly, our method suffers when the injected

noise is quite different from the source device PRNU.
However, it still proves interesting when compared to
state-of-the-art solutions if we consider the homogene-
ity of PRNU removal effect. Indeed, we are capable of
removing PRNU traces on all image regions, whereas
the considered baseline leaves image edges mainly non-
anonymized.
Our future work will be devoted to investigating the

possibility of starting from a pre-trained network to
speed-up convergence. Moreover, we will focus on a bet-
ter inversion model to be used in case of blind PRNU
removal.

Table 5 CPU time spent in user mode [s]

B = 512 B = 64

Noise extraction 187 554

Post-processing, L = 1 18 26

Post-processing, L = 10 19 26

Post-processing, L = 50 18 27

Post-processing, L = 100 19 27
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