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Abstract 

Over the last 20 years, Wi-Fi technology has advanced to the point where most modern devices are small and rely 
on Wi-Fi to access the internet. Wi-Fi network security is severely questioned since there is no physical barrier sepa-
rating a wireless network from a wired network, and the security procedures in place are defenseless against a wide 
range of threats. This study set out to assess federated learning, a new technique, as a possible remedy for privacy 
issues and the high expense of data collecting in network attack detection. To detect and identify cyber threats, 
especially in Wi-Fi networks, the research presents FEDDBN-IDS, a revolutionary intrusion detection system (IDS) 
that makes use of deep belief networks (DBNs) inside a federated deep learning (FDL) framework. Every device 
has a pre-trained DBN with stacking restricted Boltzmann machines (RBM) to learn low-dimensional characteristics 
from unlabelled local and private data. Later, these models are combined by a central server using federated learning 
(FL) to create a global model. The whole model is then enhanced by the central server with fully linked SoftMax layers 
to form a supervised neural network, which is then trained using publicly accessible labeled AWID datasets. Our feder-
ated technique produces a high degree of classification accuracy, ranging from 88% to 98%, according to the results 
of our studies.

Keywords Federated learning (FL), Deep learning (DL), Wi-Fi attacks, Intrusion detection system (IDS)

1 Introduction
The advancement of Wi-Fi technology, such as mobil-
ity and cost-effectiveness, has made it highly popular 
for communication purposes, especially with the wide-
spread use of mobile devices and Internet of Things 
(IoT) devices. However, compared to traditional com-
puter networks, Wi-Fi networks are slower and demand 

additional security measures. This is because data pack-
ets are transmitted through the air, making them vulner-
able to interception and manipulation, thereby increasing 
the susceptibility of Wi-Fi networks to various types of 
attacks. Consequently, there is an immediate need for 
Wi-Fi security defense strategies that are swift, afford-
able, and efficient. One valuable security technique in 
combating wireless intrusions during network transmis-
sions is server-side intrusion detection.

As they keep track of system activities and proac-
tively identify potential threats, intrusion detection sys-
tems (IDS) are essential for maintaining security in this 
context. New machine learning (ML) models and new 
threat detection methods have been created. The initial 
version of the IDS was very basic and used log events 
and tuples are updated from a database of signatures to 
mix them together. However, it soon became clear that 
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these approaches have significant drawbacks, particu-
larly rigidity. They were unable to identify new threats 
that had not yet been added to the signature database, 
which was one of their disadvantages, because of their 
lack of proactiveness.

Next-generation IDS began progressively adding a 
type of knowledge to find new threats as a moderating 
component. The normal subsequent stage is to make 
it workable for them to trade information about new-
found risks, permitting everyone to rapidly distinguish 
new attack courses and diminish their general effects. 
As these systems continued to become more precise 
and capable of identifying new threats, this became a 
logical development.

Machine learning techniques, specifically wireless 
network intrusion detection systems (WNIDS), have 
been successfully employed in detecting wireless intru-
sions. Several studies have been conducted in the field, 
documenting the development of various WIDs using 
different machine-learning methodologies [1, 2]. The 
most well-known AI techniques are profound brain-
deep neural networks (DNN), artificial neural net-
works (ANN), and support vector machines (SVM). 
WNIDs created using conventional machine learning 
or deep learning methods are effective in recognizing 
such anomalous events. However, obtaining informa-
tion about wireless networks for server-side machine 
learning training is both time-consuming and costly for 
customers.

To address these challenges, a cooperative machine-
learning approach has been put forward as a solution. 
In federating learning, training is shared among multi-
ple users while still taking place on the device, and user 
data never leaves the users’ devices. The federated learn-
ing algorithms, originally developed by researchers at 
Google, involve the aggregation of models created on 
individual user devices, where these models are trans-
ferred from multiple devices to a centralized location. 
This approach ensures data privacy by only sharing the 
models and not the raw data.

FL has emerged as a potential technique for addressing 
the difficulties of sensitive data exploitation and the flow 
of information between many parties [3]. Because only 
local models and not local data are sent to the server, FL 
offers a workable solution to this issue. The FL approach 
was used because it facilitates data collection while main-
taining privacy. We measured the classification accuracy 
and communication cost during training by using perfor-
mance measures and the FEDDBN algorithm. The AWID 
intrusion detection dataset was utilized in our proposed 
model, and performance measures were employed to 
examine the outcomes.

Below is a breakdown of the remainder of this paper. 
The literature-based research on ML, DL, FL, and AI 
in IDS is the main topic of Section  2. Knowledge of 
the information and methods utilized in this study is 
provided in Section  3. For our suggested model, we 
employed a variety of methodologies, which are listed 
in Section  4, along with brief descriptions of each. The 
experiments covered in the methodology section are 
emphasized in Section 5, which also examines the find-
ings. Section 6 concludes by summarizing the work done 
and addressing work that will be done in the future.

2  Knowledge about data and techniques
2.1  Intrusion detection system
In the realm of security and protection for hosts and 
networks, intrusion detection systems (IDS) play a vital 
role in automatically detecting and assessing unusual and 
hazardous behaviors. The primary objective of intrusion 
detection is to identify instances of intrusion, often estab-
lishing criteria to determine the validity of the evidence 
presented. An intrusion occurs when a computer or net-
work deviates from its normal operations and becomes a 
platform for attacks aimed at compromising or manipu-
lating network data [1, 4, 5]. In today’s interconnected 
landscape, where private information is exchanged and 
stored, IDS serves as a cybersecurity tool alongside anti-
virus and firewall software, with the firewall additionally 
conducting preliminary inspections of web traffic [6]. IDS 
systems play a crucial role in managing, monitoring, and 
maintaining the normal operation of networks, promptly 
alerting network administrators upon the detection of 
abnormal activities or potential threats [7, 8].

Typically, an IDS consists of three fundamental phases: 
the initial phase involves the collection of evidence per-
taining to cyberattacks from input data, which is then 
subjected to processing to identify the second phase, 
which is the cyberattacks themselves. The final phase 
of an IDS report provides comprehensive information 
about these identified attacks. Recent advancements 
in machine learning and deep learning have facilitated 
the ability to predict both typical and atypical network 
activities, as well as previously unknown network attacks 
[9, 10]. These technological advancements have signifi-
cantly enhanced the capabilities of IDS systems, enabling 
more accurate detection and classification of network 
intrusions.

2.2  Deep learning
Deep learning (DL) has emerged as a prominent area of 
focus among security researchers and industry experts. 
It encompasses artificial intelligence (AI) models known 
as deep neural networks (DNNs), which draw inspira-
tion from the workings of the human brain. DL, often 
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synonymous with deep learning, enables the automatic 
extraction of meaning from vast amounts of data without 
the need for domain expertise. An essential aspect of this 
process is featuring extraction, a critical step in feature 
engineering that requires prior knowledge [11]. Effective 
classification necessitates proper feature extraction. The 
utilization of neural networks (NNs) in machine learn-
ing (ML) can be traced back to the 1950s when NNs were 
able to automatically extract and classify features without 
human intervention. At that point, conventional neural 
networks served their purpose adequately.

However, the advent of advanced neural networks, 
commonly referred to as deep learning (DL), has obvi-
ated the need for feature engineering [12–14]. DL, ML, 
and NNs are frequently intertwined in discussions about 
artificial intelligence, leading to misconceptions. Neural 
networks (NNs) constitute the foundation of deep learn-
ing (DL) within the broader field of machine learning. 
The process of acquiring information and identifying pat-
terns mirrors the functioning of the human brain. Deep 
learning heavily relies on neural networks (NNs), and the 
term “many NNs” often denotes a significant number of 
them [15]. As NNs become deeper, challenges such as 
vanishing and exploding gradients arise, necessitating 
robust computing systems.

Advancements in computing systems have facilitated 
notable progress in various aspects of deep learning 
(DL), including designs, optimizers, activation functions, 
loss functions, and addressing challenges like vanishing 
and exploding gradients. DL has found extensive appli-
cations in addressing diverse cybersecurity challenges, 
consistently outperforming traditional machine learning 
methods [16]. DL architectures can be broadly catego-
rized into generative and discriminative models. In our 
approach, we leveraged innovative ideas by incorporating 
recurrent structures, deep belief networks, deep autoen-
coders, and deep Boltzmann machines. To differentiate 
these novel concepts from previous ones, we incorpo-
rated recurrent structures and convolutional neural net-
works (CNNs).

2.3  Federated learning
The underlying concept of federated learning revolves 
around constructing machine learning models using 
decentralized datasets from numerous devices while 
ensuring data privacy. Federated learning represents an 
innovative approach that involves computing an updated 
model by retrieving the latest model and employing local 
IoT data from IoT devices. After these privately trained 
models are transmitted from the IoT devices to the cen-
tral server for aggregation, a unified and enhanced global 
model is disseminated back to the IoT devices, often 
through techniques like weight averaging. Effective data 

distribution plays a pivotal role in implementing feder-
ated learning, considering the associated technological 
and practical limitations [17].

At present, federated learning can be categorized into 
three distinct types. The first type is federated horizon-
tal learning, which is applied when datasets share a com-
mon feature space but possess different sample spaces. 
The second type is vertical federated learning, employed 
when two datasets exhibit distinct feature spaces but 
share the same sample space. Finally, federated transfer 
learning comes into play when the feature and sample 
spaces of the datasets differ from each other.

3  Related works
3.1  ML and DL in IDS
The extensive body of literature extensively delves into 
the realm of intrusion detection, exploring a wide array 
of methodologies and algorithms grounded in the prin-
ciples of machine learning and deep learning. Conse-
quently, this particular section aims to shift its focus 
towards pre-existing solutions and methodologies that 
effectively harness the potential of deep learning tech-
niques [18, 19]. One such pioneering approach is known 
as Auto-IF (Autoencoder and Isolation Forest), which has 
been meticulously crafted to discern anomalies within 
fog networks. Employing the mechanism of binary clas-
sification, this method scrutinizes inbound traffic to 
ascertain its legitimacy or malicious intent. Addressing 
the challenge of disparate datasets, the integration of an 
autoencoder (AE) comes into play, effectively extracting 
regular traffic data while eliminating training attacks. By 
capitalizing on the output of the AE, the isolation for-
est adeptly detects outliers, thus culminating in a highly 
efficient anomaly detection system. The evaluation of 
this method revolves around the utilization of the NSL-
KDD dataset, whose findings unquestionably validate its 
exemplary performance, yielding an accuracy of 95.4%, 
precision of 95.81%, recall of 97.25%, and F-measure of 
96.01%.

Subsequently, the adoption of the covering-based ele-
ment extraction unit and feed-forwards profound brain 
organization strategies ensues, employing the WFEU 
extra-tree method to construct concise feature vectors. 
To comprehensively gauge the efficacy of the proposed 
intrusion detection system (IDS), two datasets, namely 
UNSW-NB15 and Aegean Wi-Fi intrusion dataset 
(AWID), are employed. Within the UNSW-NB15 dataset, 
the application of WFEU generates 22 and 26 attribute 
feature vectors for binary and multiclass classification, 
respectively, attaining accuracies of 87.10% and 77.16%. 
On the other hand, the proposed strategy culminates in a 
binary classification accuracy of 99.66% and a multiclass 
classification accuracy of 99.77%. In order to provide a 
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benchmark for comparison, the performance of the pro-
posed methodology is juxtaposed against SVM, KNN, RF, 
DT, and NB within the realm of machine learning.

Empirical studies revolving around the AWID data-
set reveal its versatile applicability across both wired 
and wireless network domains. However, it is essential 
to acknowledge that the suggested system might experi-
ence performance limitations stemming from the tempo-
ral constraints of the testing process and the intricacy of 
computational tasks. Exploring the prospect of utilizing 
robust hardware offers a potential avenue to circumvent 
these constraints [20, 21]. The deployment of recurrent 
neural networks (RNN) boasting multiple layers has 
emerged as a promising endeavor, warranting thorough 
evaluation against the reliable NSL-KDD dataset. This 
strategy encompasses two pivotal phases: traffic analysis 
and categorization. The initial phase entails preprocess-
ing the data for deep neural network (DNN) processing, 
ultimately resulting in the classification of pre-processed 
data as either legitimate or malicious. Deep proportional 
recursive networks, in conjunction with various back-
propagation algorithms, are harnessed to establish an 
optimized IDS through rigorous training. By virtue of its 
traffic analysis capabilities, this method engenders robust 
real-time security in the context of Internet of Things 
(IoT) scenarios, promptly sounding security alarms upon 
the detection of malicious activities. Noteworthy accom-
plishments include a DoS detection rate of 98.27%, R2L 
detection rate of 97.35%, U2R detection rate of 64.93%, 
and a commendable overall performance in accordance 
with the method’s examination.

In a bid to capitalize on the spatial information embed-
ded within traffic data, the gradient boosting decision 
tree (GBDT) strategy is parallelized, while the temporal 
data is handled through the utilization of a technique 
known as gated recurrent unit (GRU). By synergistically 
combining the spatial and temporal features extracted 
by the GBDT and GRU methods, a comprehensive IDS 
model is meticulously crafted. The evaluation of this 
model is conducted using the CAS2018 dataset, devel-
oped by a dedicated research project team. The outcomes 
of the evaluation illustrate the enhanced sensitivity of the 
proposed method in identifying benign instances of Dis-
tributed Denial of Service, port scan, infiltration, and web 
attack traffic, yielding impressive accuracies of 99.9%, 
99.9%, and 99.9% respectively [20].

In order to address the immaturity of convolutional 
neural network (CNN) models in network traffic intru-
sion detection, a Fast Fourier Transformation (FFT) 
method has been devised to bolster their efficacy. This 
method employs FFT to convert each network con-
nection into an image, enabling efficient classification. 
The characteristics of the data serve as the basis for 

constructing sequences necessary for the FFT, utilizing 
numerical representations rather than textual ones. By 
combining the real and imaginary components, a 64-bit 
image with three channels is generated. The results une-
quivocally showcase the efficacy of this conversion tech-
nique for both binary and multiclass data. The NSL-KDD 
dataset serves as the foundation for these experiments, 
although it should be noted that the limited data within 
the dataset poses challenges in accurately identifying 
U2R and R2L attacks. Consequently, the study delves into 
methods for real-time conversion of network communi-
cations into images and addresses the imbalances present 
within dataset samples [22, 23].

Within the realm of intrusion detection, various 
implementations are available, encompassing statisti-
cal methods, deep neural networks, and machine learn-
ing techniques [24, 25]. Notably, deep learning has been 
investigated as a cutting-edge approach for remote intru-
sion detection in recent studies [26, 27]. Wang et al. [2] 
studied attacks in a Wi-Fi environment, associating the 
consequences of two DNN assemblies and one SAE. The 
approach discussed in their study surpasses the method-
ology proposed by Thing [27]. By leveraging the AWID 
dataset, the network records were categorized into four 
classes: normal, attacks by injection, attacks by imper-
sonation, and attacks by flooding. While the accuracy 
of the flooded attack class stands at 73%, the other three 
classes achieve accuracy rates exceeding 98.3%. Further-
more, an alternative architecture based on the standard 
ladder network implementation is presented, yielding an 
impressive overall accuracy of 98.54% [26].

In order to accomplish the reduction of dimensionality 
and the extraction of meaningful risk indicators, a novel 
feature extraction method has been devised for imple-
mentation within an intrusion detection system (IDS). 
This method introduces a unique process known as fea-
ture Vec2im (vectors to pictures) conversion, followed 
by a subsequent phase involving fuzzy allocation, which 
generates fuzzy class memberships from the raw data. 
The utilization of convolutional neural networks (CNN) 
in conjunction with a Siamese Aspect 1-d element space 
allows for the effective packing of these features. When 
subjected to a trial examination using the NSL-KDD 
dataset, this method exhibits an impressive accuracy of 
86.64%. The study also places a strong emphasis on the 
application of visual analytics tools within IDS, draw-
ing parallels with their successful implementation in the 
analysis of healthcare data [28–30].

3.2  Federated learning (FL)
Upon scrutinizing the evolution of intrusion detec-
tion systems (IDS), it is firmly established that feder-
ated learning (FL) will serve as the bedrock for future 
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generations of IDS. While FL is a relatively nascent 
approach with limited applicability to IDS technologies, it 
remains imperative to undertake a state-of-the-art review 
to consolidate the existing knowledge and stimulate fur-
ther investigation by acknowledging the shortcomings 
within the literature. This study presents a roadmap of 
best practices to guide future innovations and also exam-
ines the apparent lack of uniformity in model evaluation.

In the realm of data centers, gathering data from edge 
devices and conducting centralized training proves to 
be impractical due to concerns regarding data privacy, 
network bandwidth limitations, and equipment avail-
ability. To address these challenges, the concept of fed-
erated learning has emerged [31]. Acknowledging that 
each participant may encounter local optima due to their 
limited data, the author of [32] demonstrates how feder-
ated learning enhances the accuracy of local participants’ 
models. Additionally, participants can leverage models 
trained by others to effectively overcome local optima 
and obtain more precise models.

The employment of the federated averaging (FedAVG) 
technique is recommended, along with local stochastic 
gradient descent (SGD) [33]. Communication costs pre-
sent a primary constraint in the federated learning con-
text, and the FedAVG method significantly reduces the 
number of communication cycles required compared to 
synchronous stochastic gradient descent.

To address the issue of heterogeneous networks and 
the challenge of united learning calculation intermin-
gling, the authors of [34] introduced FedProx, a federated 
optimization framework based on FedAVG. LoAda-
Boost-FedAVG procedure has been anticipated in [35] 
to build a prototype founded on local data. The model 
underwent retraining before being aggregated with the 
global model, thus enhancing learning efficiency. Simu-
lation results indicate that LoAdaBoost-FedAvg achieves 
rapid convergence.

Various frameworks and libraries are available for devel-
oping FL applications [36]. These frameworks can be 
categorized based on their primary objectives. Simulation-
oriented libraries prioritize extensibility and evaluation 
goals, providing developers with a wide range of tools for 
development and benchmarking, such as emulation and 
virtual devices. On the other hand, production-oriented 
libraries focus on usability and efficiency, offering enter-
prise-level solutions for various FL scenarios.

Simulation-focused libraries include TensorFlow Fed-
erated (TFF), PySyft, LEAF, and FedML. Production-
oriented libraries include FATE [37] and PaddleFL [38]. 
FedML and PySyft enable the development of adapt-
able systems through their FL architecture and program-
mable message exchange. FedAVG and FedProx, two 
common methods for central party disposal in FL, are 

incorporated into all the libraries. Some systems, such as 
PaddleFL, FedML, and FATE, solely rely on vertical data 
partitioning as their chosen method. Notably, FedML 
stands out as a highly comprehensive research-oriented 
library, particularly in terms of supporting diverse feder-
ated learning scenarios. Moreover, its modular worker/
client design streamlines the coding and implementation 
processes.

3.3  FL in IDS
Federated learning, initially proposed by Google research-
ers, represents a novel paradigm [3]. The pioneering study 
[3, 39] showcased the application of deep CNNs in fed-
erated settings for tasks like image classification and 
next-word prediction. While our intention is to employ 
a comparable overall architecture, we opted for feder-
ated learning in the context of intrusion detection, which 
poses greater challenges due to data imbalance. Previous 
articles [40, 41] explored the use of the AWID dataset and 
KDD 1999 Cup data to investigate intrusion detection 
within a federated environment. The studies presented 
here employed SAE models for real use cases of intrusion 
detection and anomaly detection, demonstrating that the 
integration of blockchains had minimal impact on feder-
ated learning performance.

The convergence of these two technologies has 
emerged as a popular area of research. Considering that 
most IDS heavily rely on DL models on edge devices. 
Due to the prevalence of vanilla FL implementations 
and the existence of numerous fragmented custom 
implementations, it is challenging to create a taxonomy 
based on the type of FL algorithm used. Presently, two 
prominent groups of FL-IDS prevail: recurrent neu-
ral networks (RNNs) [42] and multilayer perceptron 
(MLP) [43]. Each larger group comprises two smaller 
subgroups. RNN models encompass Long Short-Term 
Memory (LSTM) [44] and Gated Recurrent Units 
(GRU) [45], which differ in terms of neuron subtype. 
Conversely, MLP models adopt the neural network 
(NN) architecture. Autoencoders (AE) [46], significant 
subtypes frequently encountered in the literature, play 
a notable role.

While Liu et  al. [47] did not specifically address ID, 
they proposed a unique anomaly detection technique 
with potential application in the cybersecurity indus-
try. Their study introduced attention mechanism-based 
convolutional neural network long short-term memory 
(AMCNN-LSTM) architecture, combined with a feder-
ated learning framework enabling collaborative train-
ing for anomaly detection among IoT devices. Another 
research effort proposed a method for detecting attacks 
in UNIX command sequences [48]. Furthermore, the 
utilization of FL models followed a recommendation 
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to initially employ centralized learning for two IDS 
approaches, LSTM and CNN models, before transi-
tioning to FL. In the case of FLs engineering, the LSTM 
model outperformed the CNN model across all rules, 
yielding an impressive F1 score of 99.21%. Lin et al. [49] 
introduced an FL malware classification system that com-
plements rather than replaces an IDS. This system com-
bines federated learning with deep learning architectures 
such as LSTM and SVM, using a publicly available inves-
tigation dataset from Virus Total. Under ideal conditions, 
the system achieved a classification accuracy of 91.67%.

DeepFed, a federated deep learning scheme [50], inte-
grates an FL framework, DL architecture, and privacy 
mechanism using the Paillier cryptosystem [51] to con-
duct identification in cyber-physical systems (CPS). 
Mothukuri et  al. [52] devised a method for leveraging 
decentralized on-device data for intrusion detection 
in IoT networks. Another research effort introduced 
a decentralized FL method and ensemble [53]. When 
evaluated on the Modbus network dataset, LSTM and 
GRUs exhibited an average detection accuracy of 90.25%. 
FedAGRU [54] proposed an IDS for wireless edge net-
works (WENs) by combining a GRU and an SVM model 
with a unique FL algorithm. Among the various FL IDS 
designs, autoencoders (AE) emerged as the most preva-
lent FL-IDS architectures [55–59], particularly for per-
forming intrusion detection through anomaly detection, 
leveraging their ability to reconstruct input data based on 
learned network traffic patterns.

Preuveneers et  al. [56, 60] introduced a permissioned 
blockchain-based [61] federated learning system, where 
model modifications were securely recorded in the 
transaction ledger. However, the inclusion of blockchain 
transactions resulted in a decrease in overall perfor-
mance by approximately 5% to 15%, even in scenarios 
where the training process remained transparent. Cetin 
et al. [58] proposed a wireless IDS that utilized FedAVG 
and a stacked autoencoder (SAE) for intrusion detection 
using the AWID dataset [1]. Autoencoders also provide 
a foundation for incorporating additional edge comput-
ing applications into FL-IDS. Notably, Cholakoska et  al. 
[57] explored differential privacy in their study, given the 
sensitivity of clinical information. Other studies [62–64] 
employed distinct MLP NN architectures to deliver FL-
IDS solutions, showcasing their versatility.

Therefore, federated learning, as introduced by Google 
researchers, has revolutionized the field by leveraging 
deep convolutional neural networks in federated settings. 
Our research builds upon this foundation, specifically 
applying federated learning to the challenging task of 
intrusion detection. The categorization of FL-IDS mod-
els revolves around the DL architectures used, such as 
RNNs and MLPs. Noteworthy advancements have been 

made in anomaly detection, attention-based CNN-LSTM 
architectures, and the fusion of FL with deep learning 
approaches like LSTM and SVM. Additionally, the inte-
gration of blockchain technology and decentralized FL 
methods has been explored, alongside the prevalent uti-
lization of autoencoders in FL-IDS for anomaly detec-
tion tasks. The continuous exploration and refinement of 
FL-IDS architectures contribute to the advancement of 
intrusion detection systems and pave the way for future 
innovations in this domain. The summary of the exist-
ing AI-based IDSs has been grouped and presented in 
Table 1.

The reasons for choosing the RBM as a deep learning 
solution are discussed below, and it serves as an overview 
of the literature review on the current state of wireless 
network intrusion detection.

The deep learning model can automatically extract 
superior representation characteristics from large-scale 
data, and it has strong benefits for handling complicated 
data. The model’s parameters are first set with random 
weights in most of the works that are now in existence. 
On the other hand, an increasing amount of research 
[66, 67] has examined the effects of initialization and 
pre-training on FL and has proposed that beginning with 
a pre-trained model might lessen the influence of data 
heterogeneity as well as the amount of time needed to 
train the final model. By examining the effects of pre-
training in FL-based IDS utilizing a semi-supervised 
DBN-based RBM deep learning approach, our study 
adds to the body of knowledge.

To overcome the shortcomings covered in the literature 
review, the current deep learning technique is improved 
with the help of the DBN-RBM framework. We tested 
several activation functions, iteration or epoch dura-
tions, and RBM layer topologies. With a 99% success 
rate, the recommended FEDDBN model-based WNIDS 

Table 1 Summary of the survey of AI-based IDS

ML Machine learning, DL Deep learning, FL Federated learning

Study IDS datasets AI technique (ML/DL/FL)

[19–23, 28–30] NSL-KDD dataset DL

[65] UNSW-NB15 and AWID 
datasets

ML

[24–27] AWID dataset ML and DL

[40, 41] KDD 1999 cup and AWID 
datasets

DL and FL

[42–46] – ML, DL, and FL

[47–49] Virus total malware dataset ML, DL, and FL

[50–53] Modbus network dataset DL and FL

[54–59] AWID dataset ML, DL, and FL

[62–64] AWID dataset ML and FL
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with RBM pre-training model performed better. We also 
optimized the AWID dataset to increase performance. 
The optimization process includes both the identifica-
tion of unique characteristics and the removal of super-
fluous ones. The proposed DBN-RBM model learns the 
feature set dynamically for each Wi-Fi network packet 
instance using optimized and enhanced hyperparam-
eters, hence mitigating the shortcomings of different eva-
sion techniques.

4  Proposed methodology
In this study, we adopted federated learning [3] as the 
recommended and evaluated approach for creating 
WNID models. By utilizing federated learning, wireless 
network devices were able to locally train models using 
their acquired data. These local models were then aggre-
gated through averaging to form a global model. This 
methodology allowed edge devices to retain their raw 
training data, which could potentially contain sensitive 
information and confidential data. Figure 1 illustrates an 
approach and shares only the model parameters of the 
edge devices.

Our federated learning strategy involved classify-
ing incoming network transfers as either legitimate or 
malicious. To accomplish this, we employed a specific 
type of deep learning neural network called the stacked 
restricted Boltzmann machine (RBM), which recorded a 
compressed representation of abnormal data for anomaly 
detection purposes.

Within the federated learning environment, algorithms 
continually updated both their local and global models 
based on new observations to identify emerging patterns. 
Implementing federated learning for intrusion detec-
tion posed methodological challenges, including feature 
selection, deep learning model selection, and param-
eter tuning specific to federated learning. To evaluate 

the effectiveness of our federated intrusion detection 
approach, we employed performance metrics such as 
detection accuracy, precision, recall, and F1 score. Fur-
thermore, we considered the overall utilization of com-
puting resources and communication requirements, 
including computational operations and the volume of 
downloaded/uploaded bytes, as crucial aspects of feder-
ated learning from edge devices.

4.1  Dataset collection and preprocessing
The proposed methodology was validated using the 
openly available AWID dataset collected using Wireshark 
[68, 69]. Table 2 provides the breakdown of the number 
of instances for each class, including both the normal and 
the three primary attack types, namely impersonation, 
injection, and flooding. It is a comprehensive and up-
to-date publicly available dataset specifically focused on 
Wi-Fi networks.

This dataset contains a wide range of examples of 
typical and anomalous traffic patterns in 802.11 wire-
less networks [1]. It is divided into two forms, named 
after the number of samples, as indicated in the tables: 

Fig. 1 WNIDS based on federated learning framework

Table 2 Different forms of AWID datasets based on the sample 
size distribution

Dataset subtype name Classes Size Type Records

AWID-attack-full-training 10 Full Train 162,375,247

AWID-attack-full-testing 17 Full Test 48,524,866

AWID-class-full-training 4 Full Train 162,375,247

AWID-class-full-testing 4 Full Test 48,524,866

AWID-attack-reduced-training 10 Reduced Train 1,795,575

AWID-attack-reduced-testing 15 Reduced Test 575,643

AWID-class-reduced-training 4 Reduced Train 1,795,575

AWID-class-reduced-testing 4 Reduced Test 530,643
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AWID-FULL and AWID-REDUCED datasets, each 
specifying the sample size for the training and testing 
sets within each partition. Additionally, based on the 
distribution of class labels, the AWID dataset is further 
categorized into two classes, as presented in the tables: 
AWID-ATTACK and AWID-CLASS. The testbed crea-
tion of the AWID dataset has been explained in detail in 
Section 5.1.

Due to its extensive coverage and realistic attributes, 
the dataset holds the potential to serve as a standardized 
benchmark for research focused on Wi-Fi networks. For 
our study, we utilized the AWID-CLS-R-Trn and AWID-
CLS-R-tst datasets for training and testing purposes, 
respectively. The training dataset consisted of 1,795,575 
instances, comprising 1,633,190 instances labeled as nor-
mal and 162,385 instances labeled as attacks. As for the 
test dataset, it encompassed a total of 575,643 instances, 
with 530,785 instances classified as normal and 44,858 
instances classified as attacks. Table 2 provides an over-
view of the distribution of attack classes within both the 
training and test datasets.

In the dataset, the network’s characteristics reflect a 
scenario where the number of normal instances sur-
passes the number of attack instances [65]. Specifically, 
the imbalanced training dataset had a normal-to-attack 
ratio of 10:1, while the imbalanced test dataset had a ratio 
of 11:1. Such imbalances in the training model can result 
in decreased classification accuracy. To mitigate this 
issue, we took proactive measures to balance the datasets 
beforehand.

Prior to conducting our tests, we followed Ran’s 
method of preprocessing, normalization, and balanc-
ing, as outlined in their work [26]. By adhering to this 
approach, we successfully obtained a balanced dataset 
where the number of normal examples equaled the total 
count of attack instances. This outcome is illustrated 
in the last column of Table  3, showcasing the achieved 
result.

To accomplish data distribution, we employed the 
LEAF approach [39]. The dataset was initially segregated 
into different classes of devices, enabling us to generate 
varying example sizes and client counts.

To create a balanced training dataset, we randomly 
reduced the number of normal instances to 163,319 data 
instances. Similarly, the test dataset consisted of 53,078 
data instances. This approach allowed us to train our pro-
posed method on a balanced dataset while evaluating the 
learned model on an unbalanced dataset.

Considering the diverse range of value data types pre-
sent in the AWID dataset [65], it was necessary to per-
form pre-processing steps prior to analysis. Two key 
pre-processing steps were employed: normalization and 
translation of symbolic-valued properties into numeric 

values. Symbolic qualities were represented using inte-
ger values ranging from 1 to N, where N represents the 
number of symbols associated with each property. Addi-
tionally, hexadecimal data types were converted into 
integer values. Some attributes in the dataset retained a 
continuous data type. Furthermore, any attribute without 
an available value was marked with a question mark (“?”), 
which was assigned a zero value [70]. Once all attribute 
values were transformed into integers, each attribute was 
linearly normalized between zero and one using the nor-
malization equation outlined in Eq. (2).

where V represents the normalized value and corre-
sponds to the relevant attribute value, and VMIN and 
VMAX are the minimum and maximum values of the 
attribute set, respectively.

The selection of features plays a vital role in the effec-
tiveness of an intrusion detection system (IDS). However, 
the presence of duplicated features poses a significant 
challenge in this regard. Such duplication is a major fac-
tor contributing to the high dimensionality of selected 
features, which can result in reduced detection accuracy 
and a higher rate of missing intrusions in a conventional 
IDS. To address this issue, the proposed system utilizes 
the deep belief network (DBN) technique, specifically 
employing a stacked restricted Boltzmann machine 
(RBM) to reduce the dimensionality of features.

The DBN technique is well-suited for feature selec-
tion in extensive wireless networks due to its unsuper-
vised nature. This section provides an overview of the 
DBN and RBM approaches. The DBN is a common deep 
learning technique that allows for easy prediction and 
classification of samples transformed into a new feature 
space by selecting features in a layer-by-layer manner. It 
comprises multiple RBMs, where the RBM is a two-layer 
connectionist energy model with visible and hidden layer 
units represented by vectors m and n, respectively. In this 
context, the RBM consists of v visible units and h hid-
den units. The state of the d unit is denoted as nd, while 
the state of the c unit is denoted as mc. The energy for a 

(1)V =
V− VMIN

VMAX − VMIN

Table 3 Sample size distribution based on different forms of 
AWID datasets

Dataset subtype 
name

Normal Impersonation Injection Flooding

AWID-CLS-R-Trn 1,633,190 65,379 48,522 48,484

AWID-CLS-R-Tst 530,785 16,682 20,079 8,097

Total 21,63,975 82,061 68,601 56,581

Balanced 2,05,285 82,061 68,601 56,581
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given state (M, N) is defined by Eq. (2), which captures 
the energy interaction within the RBM.

Upon examining Eq. (2), it becomes evident that μ is 
defined as a function of {Wcd, ac, d}, where Wcd, ac, and 
bd represent the parameters of the RBM. Specifically, 
Wcd corresponds to the connection weights between 
the visible unit c and the hidden unit d. Additionally, ac 
signifies the bias of the visible unit, while bd represents 
the bias of a hidden unit. To further elaborate, the joint 
probability for both the visible and hidden layers can be 
expressed as Eq. (3), capturing the probabilistic relation-
ship within the RBM.

The normalization factor, denoted as Z(μ), is defined 
as the sum of the negative energy (-Energy) for all pos-
sible values of m and n, represented by Σm, n. This fac-
tor serves to normalize the probabilities within the RBM. 
Specifically, the observational data distribution for P(m 
| μ) is determined by the RBM. In turn, the joint prob-
ability P(m, n | μ) for the marginal distribution can be 
expressed through Eqs. (4) and (5), outlining the proba-
bilistic relationships involved.

To optimize the RBM parameters and maximize the 
marginal distribution, the maximum likelihood function 
utilizes stochastic gradient descent. Given a sample N, 
the maximum likelihood function is expressed as Eq. (6). 
This function serves as a key component in estimating 
the parameters of the RBM model.

In accordance with Eq. (6), the term P (m, n | μ) repre-
sents the joint probability distribution between the hid-
den and visible units.

To reduce the dimensionality of the pre-processed 
feature set, we employed the DBN deep-learning tech-
nique. This process consists of two stages: the initial 
stage involves pre-training the RBM using a predefined 
group composed of visible elements denoted as m= mv, 

(2)Energy(m, n|µ) = −

v∑

c=1

acmd −

h∑

d=1

bcnd −

v∑

c=1

h∑

d=1

mcwcdnd

(3)P(m, n|µ) =
1

Z(µ)
exp(−Energy(m, n|µ))

(4)P(n|µ) =
1

Z(µ)
m

exp(−Energy(m, n|µ))

(5)P(m|µ) =
1

Z(µ)

∑

n

exp(−Energy(m, n|µ))

(6)L(µ) =
1

V

V∑

v=1

exp(−Energy(m, n|µ))

and a set of hidden elements denoted as n= nh, where 
‘h’ denotes the hidden neural hubs. In this case, ‘v’ neu-
ral hubs are utilized at the visible level. The contras-
tive divergence (CD) method employing Gibb’s random 
sampling technique is employed to initialize the neural 
states of each feature component in a random manner. 
The hubs are divided into stochastic portions, namely 
visible and hidden hubs, without any direct connections 
between the visible and hidden hubs, but only interlink 
associations.

The visible-level hubs contain some of the original 
values from the pre-processed feature sets, while the 
hidden-level hubs contain the processed values obtained 
through level-by-level training of the entire DBN net-
work using Eqs. (2)–(6). The DBN network is constructed 
by stacking RBMs, with the initial RBM level utilizing 
pre-trained feature values as inputs for the higher layers 
of the RBM [71]. To ensure the proper unfolding of the 
RBM layers and minimize reconstruction errors, adjust-
ments to the limits (Wcd, ac, bd) are introduced in the sec-
ondary stage of DBN training.

The DBN training procedure is depicted in Fig.  2. In 
this prototype, the Wi-Fi network data was organized 
into 154 feature components arranged on a single visible 
layer. The ascending projectiles represent the generative 
model, while the descending bullets represent the rec-
ognition model. To enhance the stacked RBMs, the class 
names of the information vectors were incorporated as 
an additional level at the topmost layer. Similar to the 
configuration of a backpropagation (BP) neural network, 
the complete DBN is modified at this stage. By employing 
the Wi-Fi attack identification mechanism, reduced fea-
ture sets for future use are obtained.  

In stochastic gradient descent (SGD) models, particu-
larly deep neural networks (DNNs), federated learning 
techniques are commonly utilized. However, DNNs are 
not well-suited for capturing changes in time series data. 
Recurrent neural networks (RNNs) are often employed 
for analyzing sequence data, including wireless network 
traffic data. On the other hand, DBN offers a simpler 
structure, fewer parameters, and a faster training rate 
compared to RNNs.

To get classification results and reduce cross-entropy 
loss, deep learning classification models frequently use 
the Softmax activation function in their final neural net-
work layer. The probabilities of each category are output 
using the Softmax algorithm.

FEDDBN, a federated learning (FL) system, comprises 
two primary components: the data owner (participant) 
and the model owner (FL server). The FL server, typically 
located at the cloud center, solely receives local model 
parameters from edge devices, as depicted in Fig.  3, 
which are then aggregated to form a global model. Edge 
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devices train local intrusion detection models using pri-
vate datasets.

In existing devices, the typical FL technique is used, 
where each device imports the central model and exe-
cutes calculations using its local data. Each device there-
after returns a new iteration of the core model. These 
local models are combined by the server to provide 
a more accurate overall model. Distributed intrusion 
detection is another objective of the suggested federated 
structure. Generators and discriminators are the two 
basic categories involved. The initial parameters for the 
central models include weights, learning rate, batch size, 
penalty coefficient, and decay rate. After that, to obtain 
these parameters, a ping message is broadcast to all con-
nected active devices. Transmission of the generator and 
discriminator’s parameter sets starts the training phase. 
Following the first global epoch, local generators and dis-
criminators’ basic setup and design can be changed.

The effectiveness of our model’s training encounters 
various obstacles. It necessitates well-organized associa-
tions between clients (devices) to establish connections 
between a generator and a discriminator. Additionally, 
ensuring a reasonable computational burden on the 
devices is crucial. By examining the probability distri-
bution of the device’s local traffic, each generator first 
produces synthetic data. In order to train its intrusion 
detection network, the discriminator uses input from the 
local device and generator. The gradients are sent to the 
core networks once the two deep neural networks have 
finished their local iterations. The central model, which 
is then sent to the end devices for use, is updated with 

the local model’s parameters. The central generator and 
discriminator compile each local gradient of Gn and Dn. 
The local networks of these devices then receive the latest 
gradients once more.

The modified gradients are sent to local generators so 
they may create a new model and boost the caliber of 
the samples they produce. As seen in Figs.  4 and 5, the 
updated gradients from the central discriminator help to 
improve the local discriminators’ detection accuracy.

Edge networks require interactions with a variety of 
edge nodes for federated learning to operate. Because 
wireless connections are sometimes unstable or incon-
sistent, there are fewer communication cycles between 
the client and server. Due to the comparatively quick pro-
cessors on edge clients, the dataset for each client is less 
than the dataset. The learning framework’s performance 
is hence constrained by communication delay, although 
computing costs are frequently insignificant in contrast. 
It is crucial to guarantee that the learning process is con-
vergent while also reducing the overall number of com-
munication cycles.

This paper suggests an improved federated learning 
approach called FEDDBN that uses the attention mech-
anism notion to evaluate the importance of uploaded 
model parameters. The importance criteria are based on 
optimizing the global model’s classification performance 
to rate the relevance of various clients. When bandwidth 
resources are limited, clients with high relevance—iden-
tified by larger weights of their uploaded parameters—
are given precedence over clients with lower relevance 
because they have a bigger influence on the performance 

Fig. 2 DBN feature learning model with stacked RBM
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of the model. The local model is no longer calculated, 
and only the global model parameters are permitted to 
update after the relevance of model parameters drops 
below a specific threshold and exceeds a specific num-
ber of repetitions. As a result, transmission and calcu-
lation costs are greatly decreased while ensuring model 
convergence. The FedAVG algorithm is improved by the 
FEDDBN algorithm, which is described in detail on this 
page:

In a manner like the previous federated learning tech-
nique, the main server initializes and issues model param-
eters on the server, waits for the client model parameters 
to be uploaded, and then executes aggregate updates. In 
order to take into account, the wireless edge network envi-
ronment, we present an asynchronous updating technique 
for the server. Without awaiting the completion of other 
clients’ calculations, the central server modifies the model 
parameters in response to a client update. This considers 
situations in which several clients finish their local calcula-
tions at the same time, resulting in many updates.

Attentional processes are crucial to feature representa-
tion because they help us determine the value of param-
eters. The attention mechanism can pick out the most 
important information from a large volume of input, 
which was first used for picture recognition.

The importance of uploaded model parameters is 
assessed by utilizing the attention mechanism and 
CMFL algorithm to improve the performance of the 
global model and give greater weights to client-submit-
ted parameters that contribute more to the model. The 
attention mechanism on the main server is used by the 
FEDDBN to give various weights to various client model 
characteristics.

5  Experimental results and analysis
We assess the recall, precision, accuracy, F1-score, and 
detection rate of the FEDDBN-IDS model in this sec-
tion. We also show the outcomes of categorizations that 
were accomplished using the suggested IDS model for 
binary and multiclass data. The performance of an FL-
based IDS (FED-IDS) built without a DBN architecture 
but with the same hyperparameters is also compared. We 
keep the total number of communication rounds at the 
global level constant to achieve a fair comparison. We 
execute all essential preprocessing steps for model train-
ing on a typical AWID remote dataset before running our 
experiments.

Our studies show that the FEDDBN algorithm works 
better than the FedAvg approach when it comes to intru-
sion detection [72]. It works well to combine local models 
by averaging their weights on a central server, even for a 
basic neural network model. The overall number of fea-
tures in the dataset (154) is equivalent to the number of 
neurons in the input layer and the output layer. The loss 
function used by these neurons is sparse Softmax cross-
entropy, and they use sigmoid activation functions.

Each of our studies has 20 rounds overall, an 8-round 
round size, and a learning rate of 0.8. The results Wang 
[2] presented are consistent with the training and test 
accuracies.

In the performance analysis of intrusion detection, the 
following commonly used metrics are employed:

– True positive (TP): this metric quantifies the num-
ber of attack patterns correctly classified as attacks.

– False positive (FP): it measures the proportion of 
normal patterns mistakenly labeled as attacks.

Fig. 3 Prototype of the AWID testbed model
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– True negative (TN): the TN metric calculates the 
proportion of normal patterns correctly categorized 
as such.

– False negative (FN): it counts the number of attack 
patterns incorrectly labeled as normal.

Additionally, accuracy is employed as a measure to assess 
the ratio of correctly classified entries to the total number 
of entries, as provided by Eq. (7).

Precision is the ratio of correct intrusion classes to all 
anticipated intrusion outcomes and can be calculated as 
follows in (8):

Recall that the proportion of accurate attack classifica-
tions compared to the total number of samples that should 
have been classified as attacks is shown by formula (9):

F1-Score: reports the harmonic mean between precision 
and recall, which is given by (10).

The ratio of properly detected abnormal samples to all 
truly abnormal samples is known as the detection rate, and 
can be computed as follows in (11):

5.1  Experimental model of the testbed
To assess the outcomes of the suggested FEDDBN model, 
the suggested approach employs an authentic testbed-
based AWID dataset, as seen in Fig. 3.

The following procedures are followed in creating the 
testbed for the dataset. A physical lab that faithfully repli-
cates a standard SOHO architecture has been established 
for data collection reasons. A single mobile attacker was 
launching many assaults, as seen in Table 4, while a few 
mobile and stationary STAs served as the network’s legit-
imate client devices. More precisely, there was one desk-
top computer, two laptops, two cell phones, one tablet, 
and one smart TV that were part of the legitimate net-
work. Throughout every trial, the desktop computer and 
smart TV stayed in the same locations. Over the course 
of the trials, the smartphone devices demonstrated con-
siderable mobility, as shown by their frequent joining, 
and leaving of the network and changing of positions 
inside the lab’s facilities. Finally, the laptop computers 

(7)Accuracy =
TP + TN

TP+ FP+ TN+ FN

(8)Precision =
TP

TP+ FP

(9)Recall =
TP

TP + FN

(10)F1− Score = 2×
Precision × Recall

Precision+ Recall

(11)Detection Rate =
TP

TP+ FN

Fig. 4 Proposed scheme of the DBN method for training the local 
models
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were semi-static—that is, they hardly ever moved. Inter-
net surfing, VoIP, and file downloads were the services 
that were operating on the clients and oversaw gener-
ating traffic. The network was secured by a single AP, a 
Netgear N150 WNR1000 v3 device (Firmware Version 
V1.0.2.5460.0.82), with a 54-Mbps transfer rate and poor 
WEP encryption.

With a single access point (AP) that supported up to 
54  Mbps transfer rates and was secured by the unsta-
ble WEP encryption, the network was protected by a 
Netgear N150 WNR1000 v3 device (Firmware Version 
V1.0.2.5460.0.82). Using an Acer Aspire 5750G lap-
top running Kali Linux 1.0.6 64  bit, a single attacker 
node launched all the assaults. The attacker has a 

Fig. 5 Architecture of the proposed FEDDBN model-based WNIDS
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D-Link DWA-125 card that could be used in promiscu-
ous mode to inject packets. The attacker switched her 
MAC address a lot while carrying out several assaults. 
The Aircrack-ng suite, the MDK3 tool, the Metasploit 
framework, and bespoke ones created in C using the 
Lorcon2 library were among the tools used to imple-
ment the assaults. The mobile invader was operating 
outside the boundaries of the laboratory’s premises. A 
different gadget was added as a monitor node to record 
the wireless communication. Although it was situated 
within the network’s service area, this node was never 
connected to it.

Running Linux Debian 7.3, the monitor node was a 
desktop computer with an Alpha AWUS036H card in 
promiscuous mode and a Samsung 840 series SSD hard 
drive with a writing speed of 130  MB/s. On that node, 
the Tshark program—the terminal version of Wire-
shark—was installed. It was used to record traffic in 
many smaller-sized PCAP files, each of which included 
information collected over the course of an hour. Keep 
in mind that not every packet will be collected using this 
method. However, we stress the method’s affordability 
and ease of use, contending that it is the most dependable 
way to collect data in resource-constrained contexts, like 
SOHO ones. A technique of normalization for certain 
fields (e.g., MAC addresses represented as integers) was 
applied to the generated CSV files in an interim phase 
that followed the monitoring phase.

5.2  Operational scenarios on the AWID testbed dataset
We develop three scenarios using the AWID testbed 
dataset to assess how various data distributions affect our 
multiclass classifier’s ability to identify assaults. We quan-
tify the imbalance of the various local datasets of each FL 
client using Shannon entropy [70]. The following formula 

determines the balance between the classes given a data-
set of length n and k classes of size ci:

where all classes are equal to 0 except for one, and all 
ci=n/k, in which case the function equals 1. It is also 
important to remember that we see every FL client as 
having a single IP address. Here, d is the attack class 
count, w is the number of network flows, and h is the 
attack class size.

5.2.1  Basic scenario
The wireless network traffic in this case serves as the 
basis for each FL client’s dataset. In this instance, there is 
a significant imbalance in the distribution of samples and 
classes across the various nodes. In fact, there are only 
two instances of impersonation attacks on devices 1 and 
3, compared to seven benign traffic samples. This hypo-
thetical circumstance exemplifies a common occurrence 
in a particular wireless network, whereby some devices 
may fall prey to many assaults, while other devices carry 
out their intended functions unaffected by attacks. As 
said, however, the simple use of FL in this case can lead 
to poor convergence and performance problems. In this 
instance, there is a significant imbalance in the distribu-
tion of classes and samples across the various nodes, as 
Table 5 illustrates.

5.2.2  Balance scenario
Here, we distribute a subset of our dataset across the 
ten devices, ensuring that every device receives an equal 
number of samples from each class. As a result, each party 
has the same Shannon entropy value, as seen in Table 5. 

(12)Entropy =
−
∑k

i=1
ci
n log

ci
n

logk

Table 4 Description of the devices of the AWID testbed model

Node Type Brand OS Network Card CPU

Client 1 Desktop Custom Ubuntu Linux 12.04 LTS Netgear WNA3100 N300 Intel Core i7 3.2GHz

Client 2 Laptop Fujitsu-Siemens Ubuntu Linux 12.04 LTS Intel 3945ABG Intel Core Duo T2050 1.6GHz

Client 3 Laptop Acer Ubuntu Linux 12.04 LTS Qualcom Atheros AR9462 Intel Core i5 1.7GHz

Client 4 Smartphone iPhone 3G iOS 4.2 NA Samsung 32-bit RISC ARM 620MHz

Client 5 Other iPod Touch iOS 3.1 NA Samsung 32-bit RISC ARM 533MHz

Client 6 Laptop Acer Aspire 5750G Windows 7 Broadcom BCM943227HM4L Intel Core i5 2.8GHz

Client 7 Smartphone HTC Diamond Windows Phone 6.1 NA 528 MHz ARM 11

Client 8 Smartphone Samsung Nexus Android 4.2 NA dual-core ARM Cortex-A9 1.2 GHz

Client 9 Tablet Samsung Galaxy Tab Android 2.2 Na Cortex-A8 1 Ghz

Client 10 Smart TV LG 42LM7600S Linux NA NA

Attacker Laptop Acer Aspire 5750G Kali Linux 1.0.6 D-Link DWA-125/Linksys WUS-
B54GC

Intel Core i5 2.8GHz

Monitor Node Desktop Custom Linux Debian 7.3 Alpha AWUS036H Core i7 2.4Ghz
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As said, a balanced situation like this offers superior per-
formance; nevertheless, depending on the scenario under 
consideration, each FL client may have samples of other 
nodes, which might lead to privacy concerns.

5.2.3  Mixed scenario
To strike a compromise between the two earlier options, 
a mixed scenario is created where each side keeps its own 
samples, but they are balanced locally. The devices that 
have a Shannon entropy value, as determined by (12), 
greater than a predetermined threshold (0.2) are the 
ones that we choose: parties 1, 2, 4, 6, and 8. Since the 
classes of the devices are not evenly distributed, we apply 

a basic instance selection technique to eliminate some of 
the samples from the prominent classes until we obtain 
the Shannon entropy within a range of values after this 
first filtering step. With this set falling between 0.66 and 
0.71, we are left with a dataset that is a reasonable middle 
ground between the default situation, in which balancing 
was not applied, and the balanced scenario, in which the 
dataset was arbitrarily split across the ten devices.

Our studies have been conducted utilizing IBM-based 
federated learning (IBMFL), which uses a federated 
architecture for learning, in a distributed and virtual 
testbed. It is configured with a central server and ten cli-
ent devices, or parties, each of which runs a separate FL 
process. The simulation divides the learning into many 
discrete processes or threads, each of which does the 
federated learning job in parallel, even if all the federated 
learning processes are carried out on one physical sys-
tem. For our investigation, an HP laptop equipped with 
a 3 GHz Intel(R) Core (TM) i7-10750H CPU and a 4-GB 
NVIDIA GeForce RTX2060 graphics card was used to 
replicate the federated environment, parties, and server. 
After every round of global communication, the central 
edge server receives all the local model parameters and 
compiles and updates them.

In terms of the percentage of correctly detected cases 
for each class label in the AWID dataset, the proposed 
FEDDBN model performed better than the existing Fed-
AVG technique as shown in Fig. 6.

The performance of the FEDDBN model was veri-
fied. Table  6 summarizes the findings for binary clas-
sification using the FEDDBN-IDS and AWID datasets. 
Additionally, it illustrates how FED-IDS (adapted) and 
FEDDBN-IDS (proposed) compare across all the meas-
ures. According to the table, the FEDDBN-IDS binary 

Table 5 Description of the basic, balanced, and mixed scenarios

Scenario Device Entropy

Basic 1 0.520

2 0

3 0.286

4 0

5 0.388

6 0.472

7 0.119

8 0

9 0.087

10 0.085

Balanced 1–10 0.761

Mixed 1 0.662

2 0.664

4 0.668

6 0.698

8 0.702

Fig. 6 Comparative analysis of federated vs. non-federated algorithms using detection accuracy
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classification model performed 98% to 99.5% correctly 
when utilizing the AWID dataset. Table  7 displays the 
outcomes of the final global upgrades. The FEDDBN-IDS 
multiclass classification model’s performance for various 
metrics using the AWID dataset ranged between 98.5% 
and 99%.

In our research, we adjusted parameter D, or the num-
ber of wireless network devices, during each training ses-
sion. For instance, D =1 denotes that all wireless network 
devices were utilized for training, D =  0:5 denotes that 
only half of the devices were used, and D =  0 denotes 
that an algorithm round employed a random number of 
devices. Every linked device was utilized for every train-
ing cycle in the initial experiment, with D = 1. By calcu-
lating the detection accuracy rate, Fig.  7 illustrates the 
performance of the FEDDBN-IDS model. The metrics 
were averaged over the 20 runs. As seen from the data 
in the figure, the detection accuracy rate increased as the 
number of wireless devices increased.

The values of D are then modified to 0.5, where train-
ing uses half of the wireless network device group, and 
to 0, where a random number of device groups is cho-
sen for each round, with a minimum of one device. 
The results in Fig. 8 show that even when only half of a 
group’s devices are used in a round, detection accuracy 
is not hampered. According to this research, it is possi-
ble to train a model with comparable performance using 
fewer training devices. Therefore, we can use half as 
many devices for each training session and spend less on 

both connectivity and power. Figures 9 and 10 show the 
performance of the clients and server for CPU usage and 
memory consumption.

As shown in Fig. 11, when four or more devices were uti-
lized in the training phase of the federated algorithm with 
D = 0, the accuracy of the model increased for all attacks. 

Table 6 Comparison of binary classification of the AWID dataset 
using FED-IDS and FEDDBN-IDS

Metrics AWID

FED-IDS FEDDBN-IDS

Accuracy 96.1 99.2

Precision 95.8 99.3

Recall 95.1 99

F1-Score 96 98.9

Detection rate 96.3 99.5

Table 7 Comparison of multiclass classification of the AWID 
dataset using FED-IDS and FEDDBN-IDS

Metrics AWID

FED-IDS FEDDBN-IDS

Accuracy 96 99.1

Precision 96.2 98.7

Recall 95.5 99.3

F1-Score 96.1 99

Detection Rate 95.8 99.2

Fig. 7 Performance evaluation of FEDDBN-IDS with D = 1

Fig. 8 Eight devices regrouped together, with the number of devices 
utilized in each training cycle changing (parameter D)

Fig. 9 Performance evaluation of CPU usage by client and server 
devices of FEDDBN-IDS model with D = 1
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The average detection accuracy increased between one 
and eight devices. Our efforts had a statistically significant 
and favorable influence on the rate of attack detection 
accuracy across the board. The detection accuracy rate 
was lower when the two devices were employed. This is 
because the federated algorithm achieves an equilibrium 
point where each wireless network device starts with the 
federated model, calculates the update, and receives the 
identical federated model back from the server. Because 
of the greater variety of devices, this scenario is avoided 
when more devices are registered in a cluster.

The amount of data sent to and received from the wire-
less network devices serves as a proxy for the commu-
nication cost of the federated algorithm. We sent 1621 
bytes per model exchange using the proposed FEDDBN.

During each training cycle, a contributing device trains 
its model, changes its weights, and sends these modi-
fications to the server. The server subsequently receives 
the weights that have been averaged, resulting in a total 
of two communications, each round of 1621 and 3242 
bytes in size. In every round, a total of 3251 bytes are 
transmitted, and each patient receives nine bytes of com-
mand data. With eight rounds employed, our FEDDBN 
communication cost was 26,008 bytes. 98,034 bytes is the 
usual size of data saved on a device. We can reduce the 
cost of communication by 3.8 and save 72,026 bytes dur-
ing transmission by using the proposed method.

The energy consumption analysis of the federated algo-
rithm involved measuring the USB e-meter multiplied by 
the duration of each algorithmic step. During the training 
process, the overall energy consumed by the federated 
model was 265 J (joules), while the algorithm-free device 
consumed 218  J. Consequently, training the federated 
model required an additional 46  J, adding a new device 
to the network consumed 5.5  J, and testing new sam-
ples required 5.24  mJ. Thus, our FEDDBN model con-
sumed 17.5% more energy during training and 3.4% more 
energy during prediction compared to the non-federated 
approach.

Next, we conducted a performance comparison between 
our proposed federated FEDDBN algorithm and vari-
ous non-federated learning algorithms, including support 
vector machine (SVM), naive Bayes (NB), J48, multilayer 
perceptron (MLP), random forest (RF), k-nearest neigh-
bor (kNN), K-means, and DBN-RBM, as depicted in 
Fig. 6. Figure 6 also showcases the training times of feder-
ated and non-federated models trained with eight device 

Fig. 10 Performance evaluation of memory consumption by client 
and server devices of FEDDBN-IDS Model with D = 1

Fig. 11 Attack-specific detection accuracy of FEDDBN-IDS with D = 0
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records. The results indicate that classifiers such as KNN, 
NB, K-means, and DBN-RBM exhibit greater time effi-
ciency compared to SVM, RF, J48, MLP, and FEDDBN 
algorithms. However, in terms of training times, both the 
deep learning-based DBN-RBM and the federated learn-
ing-based FEDDBN models perform well when compared 
to the conventional MLP neural network technique.

Furthermore, for the AWID dataset, Fig.  8 presents 
a comparison of detection accuracy for various Wi-Fi 
attacks using federated learning and other learning 
techniques. We observed that among the non-federated 
learning algorithms, RF and DBN-RBM achieved the 
highest detection accuracy rates for the system trained 
on data from eight devices, with an average detection 
accuracy. In contrast, the federated learning model 
FEDDBN exhibited a higher detection accuracy rate of 
99% compared to RF and DBN-RBM models. Due to 
its superior training efficiency compared to non-fed-
erated algorithms, FEDDBN offers the best detection 
accuracy.

Finally, the scalability of the proposed system was 
assessed using the same architecture and data. Instead 
of tracking the amount of time spent on the server, we 
tracked the amount of time spent by clients in each 
training round. All the models reached convergence at 
approximately 6.5 s. Round 8 was reached by the two-
device model in 6.79  s, whereas it took the 64-device 
model the same amount of time. Generally, increasing 
the number of devices results in a linear increase in 
the amount of time spent at the server but not at the 
expense of lengthening training sessions or individual 
rounds.

6  Conclusion and future work
Using the substantial AWID dataset, which has previ-
ously been made accessible for federated learning experi-
ments, we demonstrate how to construct the federated 
learning framework, FEDDBN, to identify intrusions in 
wireless networks. With a decreased communication 
overhead, the FEDDBN algorithm achieved a detection 
accuracy of 99%. We discovered that FEDDBN central-
ized learning outperformed the conventional DBN model 
in terms of classification performance by 3%. The detec-
tion accuracy of the FEDDBN algorithm was approxi-
mately 1% higher than that of FedAVG as shown in Fig. 6, 
and the method required up to 70% fewer communica-
tion rounds than that of FedAVG.

The experimental results also show that utilizing an 
RBM-based DBN to train an FL-based IDS on heteroge-
neous data may significantly reduce FEDDBN model per-
formance by as much as 50%. There is some evidence to 
suggest that pre-training both the local and global models 
may somewhat reduce data heterogeneity. The suggested 

DBN-RBM model also addresses the drawbacks of vari-
ous evasion strategies by dynamically learning the feature 
set for each occurrence of the Wi-Fi network packet with 
improved and optimized hyperparameters. According to 
the operational cybersecurity perspective, the suggested 
FEDDBN model uses an FL model to assure data privacy 
and a dynamically pre-trained DBN based RBM to pro-
tect wireless network devices, systems, and users’ data 
from adversarial assaults. Soon, a non-ML cyber secu-
rity researcher may use the decentralized hardware IDS 
design of the wireless network components to build the 
suggested FL model.

The following are the future directions of research 
that must be considered under the proposed FEDDBN 
model: (i) to solve the issue of resource heterogeneity. In 
other words, the primary difficulty is in connecting every 
device inside the diverse wireless networks because these 
heterogeneous devices operate on different platforms and 
frameworks. This includes the Internet of Things (IoT) 
devices that are connected via wireless networks, the 
large number of different devices, network complexity, 
heterogeneity at the device and network levels, multiple 
communication protocols, and the enormous volume of 
actions that these sensors naturally produce. All these 
factors make the development of IDS extremely difficult, 
(ii) to utilize datasets encompassing more attack types by 
pre-training the datasets to detect different attack types 
using DL-based models like SAE, RNN, etc, than the pro-
posed DBN-RBM model, and (iii) to model self-security 
new-generation FL-IDS to prevent model poisoning 
and malicious parameter update packets. For instance, 
incorporating blockchain technology can increase a 
task’s transparency and traceability [73] and the use case 
of the same has started its implementation using a per-
missioned blockchain-based federated learning method 
where incremental updates to an anomaly detection 
machine learning model are chained together on the dis-
tributed ledger [56, 60].
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