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Access control systems using the latest biometric technologies can offer a higher level of security than conventional password-
based systems. Their widespread deployments, however, can severely undermine individuals’ rights of privacy. Biometric signals
are immutable and can be exploited to associate individuals’ identities to sensitive personal records across disparate databases. In
this paper, we propose the Anonymous Biometric Access Control (ABAC) system to protect user anonymity. The ABAC system
uses novel Homomorphic Encryption (HE) based protocols to verify membership of a user without knowing his/her true identity.
To make HE-based protocols scalable to large biometric databases, we propose the k-Anonymous Quantization (kAQ) framework
that provides an effective and secure tradeoff of privacy and complexity. kAQ limits server’s knowledge of the user to k maximally
dissimilar candidates in the database, where k controls the amount of complexity-privacy tradeoff. kAQ is realized by a constant-
time table lookup to identity the k candidates followed by a HE-based matching protocol applied only on these candidates. The
maximal dissimilarity protects privacy by destroying any similarity patterns among the returned candidates. Experimental results
on iris biometrics demonstrate the validity of our framework and illustrate a practical implementation of an anonymous biometric
system.
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1. Introduction

In the last thirty years, advances in computing technologies
have brought dramatic improvements in collecting, storing,
and sharing personal information among government agen-
cies and private sectors. At the same time, new forms of
privacy invasion begin to enter the public consciousness.
From sale of personal information to identity theft, from
credit card fraud to YouTube surrendering user data [1], the
number of ways that our privacy can be violated increases
rapidly.

One important area of growing concern is the protection
of sensitive information in various access control systems.
Access control in a distributed client-server system can
generally be implemented by requesting digital credentials
of the user wanting to access the system. Credentials are
composed of attributes that contain identifiable information
about a given user. Such information can be very sensitive
and uncontrolled disclosure of such attributes can result
in many forms of privacy breaches. It is unsurprising that
privacy protection has been a central concern in widespread

deployment of access control systems, especially in many of
the e-commerce applications [2].

Among the different types of access control systems,
Biometric Access Control (BAC) systems pose the most
direct threat to privacy. BAC systems control allocation
of resources based on highlydiscriminative physical char-
acteristics of the user such as fingerprints, iris images,
voice patterns, or even DNA sequences. As a biometric
signal is based on “who you are” rather than “what you
have,” BAC systems excel in authenticating a user’s identity.
While the use of biometrics enhances system security and
alleviates users from carrying identity cards or remembering
passwords, it creates a conundrum for privacy advocates as
the knowledge of the identity makes it much harder to keep
users anonymous. A curious system operator or a parasitic
hacker can infer the identity of a user based on his/her
biometric probe. Furthermore, as biometrics is immutable
from systems to systems, it can be used by attackers to
cross-correlate disparate databases and cause damages far
beyond the coverage of any protection schemes for individual
database systems.
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A moment of thought reveals that many access control
systems do not need the true identity of the user but simply
require a confirmation that the user is a legitimate member.
For example, an online movie vendor may have a category
of “VIP” members who pay a flat monthly membership fee
and can enjoy an unlimited number of movies download.
While it is important to verify the VIP status of a candidate
user, it is unnecessary to precisely identify who the user
is. In fact, it will be appeasing to customers if the vendor
can provide a guarantee that it can never track their movie
selections. Entry control of a large office building that hosts
many companies can also benefit from such an anonymous
access control system. While it is essential to restrict entry
only to authorized personnel, individual companies may
be reluctant to turn over sensitive identity information to
the building management. Thus a system that can validate
the tenant status of a person entering the building without
knowing the true identity will be valuable. Another example
is a community electronic message board. Only the members
of the community can sign in to the system. Once their
member status are verified, they can anonymously post
messages and complaints to the entire community. All the
aforementioned examples can benefit from an access control
system that can verify the membership status using biometric
signals while keeping the identity anonymous.

In this paper, we introduce Anonymous Biometric Access
Control (ABAC) to provide anonymity and access control in
such a way that the system server (Bob) can authenticate the
membership status of a user (Alice) but cannot differentiate
Alice from any other authorized users in his database. Our
scheme differs from other work in privacy protection of
biometric systems which focus primarily on the security of
the biometric data from improper access. Our goal is to
guarantee user’s anonymity while providing the safeguard of
the system resources similar to other access control systems.

In this paper, we consider two technical challenges
in developing an ABAC system. First, to cope with the
variability of the input probe, any biometric access system
needs to perform a signal matching process between the
probe and all the records in the database. The challenge here
lies in making the process secure so that Bob can confirm the
membership status of Alice without knowing any additional
information about Alice’s probe. We cast this process as
a secure multiparty computation problem and develop a
novel protocol based on homomorphic encryption. Such
a procedure prevents Bob from extracting any knowledge
about Alice’s probe and its similarity distances with any
records in Bob’s database. On the other hand, Bob can
compare the distances to a similarity threshold in the
encrypted domain and the comparison results are aggregated
into two secret numbers shared between Bob and Alice. The
secret share held by Bob prevents Alice from cheating and
Alice’s membership status can be verified by Bob without
knowing her identity.

Second, we consider the complexity challenge posed by
scaling the matching process in encrypted domain to large
databases. The high complexity of cryptographic primitives
is often cited as the major obstacle of their widespread
deployment in realistic systems. This is particularly true

for biometric applications that require matching a large
number of high-dimensional feature vectors in real time.
In this paper, we propose a novel framework to provide
a controllable trade-off between privacy and complexity.
We call the framework k-anonymous ABAC system (k-
ABAC) which keeps Alice anonymous from k, rather than
the entire database of, authorized members in the database.
This is similar to the well-known k-anonymity model [3] in
that k is a controllable parameter of anonymity. However,
the two approaches are fundamentally different—the k-
anonymity model is a data disclosure protocol where Bob
anonymizes the database for public release by grouping all
the data into k-member clusters. In a k-ABAC system, the
goal is to prevent Bob from obtaining information about the
similarity relationship between his data and the query probe
from Alice. In order to minimize the knowledge revealed by
any k-member cluster, we propose a novel grouping scheme
called k-Anonymous Quantization (kAQ) that optimizes
the dissimilarity among members in the same group. kAQ
forbids similar patterns to be in the same group which might
be a result of multiple registrations of the same person
or from family members with similar biometric features.
The kAQ process is carried out mostly in plaintext and
is computationally efficient. Using kAQ as a preprocessing
step, the subsequent encrypted-domain matching can be
efficiently realized within the real-time constraint.

The rest of the paper is organized as follows. After
reviewing related work in Section 2, we provide the nec-
essary background in the security models for anonymous
biometric matching, homomorphic encryption, and dimen-
sion reduction in Section 3. We first provide an overview
of the entire system in Section 4. The design of ABAC
using homomorphic encryption is presented in Section 5.
In Section 6, we introduce the concepts of kABAC and
k-Anonymous Quantization. We also describe a greedy
algorithm to realize kAQ and show a secure procedure to
perform quantization without revealing private information.
To demonstrate the viability of our approach, we have tested
our system using a large collection of iris patterns. The details
of the experiments and the results are presented in Section 7.
We conclude the paper and discuss future work in Section 8.

2. RelatedWork

The main contributions of our paper are the introduction of
the ABAC system concept and a practical design of such a
system using iris biometrics. There are other work that deal
with the privacy and security issues in biometric systems but
their focus is different from this paper. A privacy-protecting
technology called “Cancelable Biometrics” has been pro-
posed in [4]. To protect the security of the raw biometric
signals, a cancelable biometric system distorts a biometric
signal using a specially designed noninvertible transform
so that similarity comparison can still be performed after
distortion. Biometric Encryption (BE) described in [5]
possesses all the functionality of Cancelable Biometrics, and
is immune against the substitution attack because it outputs
a key which is securely bound to a biometric. The BE
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templates stored in the gallery have been shown to protect
both the biometrics themselves and the keys. The stored BE
template is also called “helper data”. “Helper data” is also
used in [6] to assist in aligning a probe with the template
that is available only in the transformed domain and does
not reveal any information about the fingerprint.

All the above technologies focus on the security and
privacy of the biometric signals in the gallery. Instead
of storing the original biometric signal, they keep only
the transformed and noninvertible feature or helper data
extracted from the original signal that do not compromise
the security of the system even if they are stolen. In these
systems, the identity of the user is always recognized by the
system after the biometric matching is performed. To the
best of our knowledge, there are no other biometric access
systems that can provide access control and yet keep the user
anonymous. Though our focus is on user anonymity, our
design is complementary to cancelable biometrics and it is
conceivable to combine features from both types of systems
to achieve both data security and user anonymity.

Anonymity in biometric features like faces is considered
in [7]. Face images are obfuscated by a face deidentification
algorithm in such a way that any face recognition softwares
will not be able to reliably recognize deidentified faces. The
model used in [7] is the celebrated k-anonymity model
which states that any pattern matching algorithm cannot
differentiate an entry in a large dataset from at least k − 1
other entries [3, 8]. The k-anonymity model is designed for
data disclosure protocols and cannot be used for biometric
matching for a number of reasons. First, despite the goal of
keeping the user anonymous, it is very important of an ABAC
system to verify that a user is indeed in the system. Face
de-identification techniques provide no guarantee that only
faces in the original database will match the de-identified
ones. As such, an imposter may gain access by sending
an image that is close to an de-identified face. Second,
de-identification techniques group similar faces together to
facilitate the public disclosure of the data. This is detrimental
to anonymity as face clusters may reveal important identity
traits like skin color, facial structure, and so forth.

Another key difference between anonymity in data dis-
closure and biometric matching is the need for secure collab-
oration between two parties—the biometric server and the
user. The formal study of such a problem is Secure Multiparty
Computation (SMC). SMC is one of the most active research
areas in cryptography and has wide applications in electronic
voting, online bidding, keyword search, and anonymous
routing. While there are no previous work that use SMC
for biometric matching, many of the basic components in a
BAC system can be made secure under this paradigm. They
include inner product [9, 10], polynomial evaluation [11–
13], thresholding [14–16], median [17], matrix computation
[18, 19], logical manipulation [20], k-means clustering [21,
22], decision tree [23–25] and other classifiers [12, 26–28]. A
recent tutorial in SMC for signal processing community can
be found in [29].

The main hurdle in applying computationally-secure
SMC protocols to biometric matching is their high compu-
tational complexity. For example, the classical solution to the

thresholding problem (this problem is commonly referred
to as the Secure Millionaire Problem in SMC literature), or
comparing two private numbers a and b, is to use Oblivious
Transfer (OT) [30]. OT is an SMC protocol for joint table
lookup. The privacy of the function is guaranteed by having
the entire table encrypted by a precomputed set of public
keys and transmitted to the other party. The privacy of the
selection of the table entry is protected based on obfuscating
the correct public key among the dummy ones. Even
with recent advances in reducing the computational and
communication complexity [13, 17, 31–34], the large table
size, the intensive encryption, and decryption operations
render OT difficult for pixel or sample-level signal processing
operations.

A faster but less general approach is to use Homomorphic
Encryption (HE) which preserves certain operations in the
encrypted domain [35]. Recently, the homomorphic encryp-
tion scheme is proposed by IBM and Stanford researcher
C. Gentry has generated a great deal of excitement in using
HE for encrypted domain processing [36]. He proposed
using Ideal Lattices to develop a homomorphic encryption
system that can preserve both addition and multiplication
operations. This solves an open problem on whether there
exists a semanticallysecure homomorphic encryption system
that can preserve both addition and multiplication. On the
other hand, his construction is based on protecting the
simplest boolean circuit and its generalization to realistic
application is questionable. In an interview, Gentry estimates
that performing a Google search with encrypted keywords
would increase the amount of computing time by about a
trillion [37] and even this claim is already challenged by
others to be too conservative [38].

More practical homomorphic encryptions such as Pail-
lier cryptosystem can only support addition between two
encrypted numbers, but do so over a much larger additive
plaintext group, thus providing a wide dynamic range for
computation [39]. Furthermore, as illustrated in Section 3,
multiplication between encrypted numbers can be accom-
plished by randomization and interaction between parties.
Recently, Paillier encryption is being applied in a number of
fundamental signal processing building blocks [40] includ-
ing basic classifiers [27] and Discrete Cosine Transform
[41] in encrypted domain. Nevertheless, the public-key
encryption and decryption processes in any homomorphic
encryption still pose a formidable complexity hurdle to
overcome. For example, the fastest thresholding result takes
around 5 seconds to compare two 32-bit numbers using
a modified Paillier encryption system with a key size of
1024 bits [14]. One of the goals of this paper is to utilize
homomorphic encryption to construct a realistic biometric
matching system that can tradeoff computation complexity
with user anonymity in a provably secure fashion.

3. Background

We model any biometric signal x = (x1, . . . , xn)T as an n-
dimensional vector from a feature space Fn where F is a
finite field. We also assume the existence of a commutative
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distance function d : Fn× Fn → R+∪{0} that measures the
dissimilarity between two biometric signals. In order for the
distance to be computable using the operators in the field,
we assume F to be a subfield of R so that the components of
the constituent vectors will be treated as real numbers in the
distance computation. The most commonly used distance is
the Euclidean distance:

d
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x, y

)2 := ∥∥x− y
∥∥2

2 =
n∑

i=1

(
xi − yi

)2
. (1)

For the iris patterns used in our experiments, F is the binary
field Z2 = {0, 1} and d(·, ·) is a modified hamming distance
defined below [42]:
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where ⊗ denotes the XOR operation and ∩ denote the
bitwise AND. maskx and masky are the corresponding mask
binary vectors that mask the unusable portion of the irises
due to occlusion by eyelids and eyelash, specular reflections,
boundary artifacts of lenses, or poor signal-to-noise ratio.
As the mask has substantial variation even among feature
vectors captured from the same eye, we assume that the mask
vectors do not disclose any identity information.

The special distance function and the high dimension of
many feature spaces make them less amenable to statistical
analysis. There exist mapping functions that can project
the feature space Fn into a lower-dimensional space Rm

such that the original distance can be approximated by the
distance, usually Euclidean, in Rm. The most well-known
technique is Principal Component Analysis (PCA) which is
optimal if the original distance is Euclidean [43]. For general
distances, mapping functions can be derived by two different
approaches—the first approach is Multidimensional Scaling
(MDS) in which an optimal mapping is derived based on
minimizing the differences between the two distances over
a finite dataset [44]. The second approach is based on
distance relationship with random sets of points and include
techniques such as Fastmap [45], Lipshcitz Embedding [46],
and Local Sensitivity Hashing [47]. In our system, we
use both PCA and Fastmap for their low computational
complexity and good performance. Here we provide a
brief review of the Fastmap procedure and will discuss its
secure implementation in Section 6. Fastmap is an iterative
procedure in which each step selects two random pivot
objects xA and xB and computes the projection x′ for any
data point x as follows:

x′ := d(x, xA)2 + d(xA, xB)2 − d(x, xB)2

2d(xA, xB)
. (3)

The projection in (3) requires only distance relationships. A
new distance is then computed by taking into account the
existing projection:

d′
(
x, y

)2 := d
(
x, y

)2 − (x′ − y′
)2, (4)

where x′ and y′ are the projections of x and y, respectively.
The same procedure can now be repeated using the new
distance d′(·, ·). It has been demonstrated in [45] that using
pivot objects that are far apart, the Euclidean distance in the
projected space produces a reasonable approximation of the
original distance of many different feature spaces.

Using a dissimilarity metric, we can now define the
function of a biometric access control system. It is a
computational process that involves two parties: a biometric
server (Bob) and a user (Alice). Bob is assumed to have a
database of M biometric signals DB = {x1, . . . , xM}, where
xi = (xi1, . . . , xin)T is the biometric signal of member i. Alice
provides a probe q and requests access from the server.
Armed with these notations, we first provide a functional
definition of a Biometric Access Control system.

Definition 3.1. A Biometric Access Control (BAC) system is
a computational protocol between two parties, Bob with a
biometric database DB and Alice with a probe q, such that at
the end of the protocol, Alice and Bob can jointly compute
the following value:

yBAC :=
⎧
⎨

⎩

1, if d
(
q, xi

)2
< ε for some xi ∈ DB

0, otherwise.
(5)

Adding user anonymity to a BAC system results in the
following definition:

Definition 3.2. An Anonymous BAC (ABAC) system is a BAC
system on DB and q with the following properties at the end
of the protocol.

(1) Except for the value yBAC, Bob has negligible knowl-
edge about q, d(q, x), and the comparison results
between d(q, x)2 and ε for all x ∈ DB.

(2) Except for the value yBAC, Alice has negligible knowl-
edge about ε, x, d(q, x), and the comparison results
between d(q, x)2 and ε for all x ∈ DB.

Like any other computationally secure protocols, “negligible
knowledge” used in the above definition should be inter-
preted as, given the available information to a party, the
distribution of all possible values of the private input from
the other party is computationally indistinguishable from
the uniformly random distribution [48]. The first property
in Definition 3.2 defines the concept of user anonymity,
that is, Bob knows nothing about Alice except whether
her probe matches one or more biometric signals in DB.
As it has been demonstrated that even the distance values
d(q, xi) are sufficient for an attacker to recreate DB [49], the
second property is designed to disclose the least amount of
information to Alice.

It is impossible to design a secure system without
considering the possible adversarial behaviors from both
parties. Adversarial behaviors are broadly classified into two
types: semihonest and malicious. A dishonest party is called
semihonest if he follows the protocol faithfully but attempts
to find out about others’ private data through the commu-
nication. A malicious party, on the other hand, will change
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private inputs or even disrupt the protocol by premature
termination. Making the proposed system robust against
a wide range of malicious behaviors is beyond the scope
of this paper. Here, we assume Bob to be semihonest but
allow certain malicious behaviors from Alice—we assume
that Alice will engage in malicious behaviors only if those
behaviors can increase her chance of gaining access, that is
turning yBAC into 1, from using a purely random probe.
This is a restricted model because, for example, Alice will
not prematurely terminate before Bob reaches the final step
in computing yBAC. Also, Alice will not randomly modify
any private input unless such modification will increase her
chance of success.

In Section 5, we shall provide an implementation of an
ABAC system on iris biometrics that is robust under the
above security model. The procedure is based on repeated
use of a homomorphic encryption system. An encryption
system Enc(x) is homomorphic with respect to an operation
f1(·, ·) in the plaintext domain if there exists another
operator f2(·, ·) in the ciphertext domain such that

Enc
(
f1
(
x, y

)) = f2
(
Enc(x), Enc

(
y
))
. (6)

In our system, we choose the Paillier encryption system as it
is homomorphic over a large additive plaitext group and thus
providing a wide dynamic range for computation. Given a
plaintext number x ∈ ZN , the Paillier encryption process is
given as follows:

Encpk(x) =
[

(1 + N)x · rN mod N2
]

, (7)

where N is a product of two equal-length secret primes and r
is a random number in ZN to ensure semantic security. The
public key pk consists of only N . The decryption function
Decsk(c) with c ∈ ZN2 and the secret key sk being the Euler-
phi function φ(N) is defined by the following two steps:

(1) Compute m̂ = [(cφ(N) mod N2)− 1]/N over the
integer field;

(2) Decsk(c) = m̂ · φ(N)−1 mod N.

The Paillier system is secure under the decisional composite
residuosity assumption and we refer interested readers
to [50, Chapter 11], for details. Paillier is homomorphic
over addition in ZN and the corresponding function is
multiplication over the ciphertext field ZN2 . We can also carry
out multiplication with a known plaintext in the encrypted
domain. These properties are summarized in:

Encpk
(
x + y

) = Encpk(x) · Encpk
(
y
)
,

Encpk
(
xy
) = Encpk(x)y.

(8)

Multiplication with a number to which only the ciphertext
is known can also be accomplished with a simple com-
munication protocol. Assume that Bob wants to compute
Encpk(xy) based on the ciphertexts Encpk(x) and Encpk(y).
Alice has the secret key sk but Bob wants to keep x, y and xy
hidden from Alice. MULT(Encpk(x), Encpk(y)) (Protocol 1)
is a secure protocol that can accomplish this task. It is secure

Preprocessing step

Cells

DB

K-anonymous
quantization

Bob

Data Cell

· · · · · ·

Matching

Alice

Bob

Secure index
selection Secret

matching

Figure 1: ABAC system overview.

because Alice can gain no knowledge about x and y from
the uniformly random x − r and y − s where r and s are
two random numbers generated by Bob, and Bob is never
exposed to any plaintext related to x and y. The complexities
of MULT(Encpk(x), Encpk(y)) are three encryptions and
seven encrypted-domain operations, (multiplication and
exponentiation) on Bob side, as well as two decryptions and
one encryption on Alice side. The communication costs are
three encrypted numbers. The homomorphic properties and
this protocol will be used extensively throughout this paper.

4. SystemOverview

In this section, we provide an overview of the entire design
of our efficient anonymous biometric access control system.
Again, we will use Bob and Alice to denote the biometric sys-
tem owner and the user, respectively. The overall framework
of our proposed system is shown in Figure 1. There are two
main processing components in our systems: the preprocess-
ing step and the matching step. While the matching step is
executed for every probe, the preprocessing step is executed
only once by Bob to compute a publiclyavailable quantization
table based on a process called k-Anonymous Quantization.
The purpose of the public table is that, based on a joint
secure-index selection of the table entry between Alice and
Bob, Bob can significantly reduce the scope of the similarity
search from the entire database DB to approximately k
candidates. The k-Anonymous Quantization guarantees that
(1) if there is an entry in Bob’s database that matches Alice’s
probe, this entry must be among these candidates, (2) all the
candidates are maximally dissimilar so as to provide the least
amount information about Alice’s probe, and (3) the public
table discloses no information about Bob’s database. The
details of the k-Anonymous Quantization and the secure-
index selection will be discussed in Section 6.
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Require: Bob: Encpk(x), Encpk(y); Alice: sk
Ensure: Bob computes Encpk(xy)

(1) Bob sends Encpk(x − r) = Encpk(x) · Encpk(−r) and Encpk(y − s) = Encpk(y) · Encpk(−s)
to Alice where r and s are uniformly random numbers generated by Bob.

(2) Alice decrypts Encpk(x − r) and Encpk(y − s), computes Encpk[(x − r)(y − s)] and send
it to Bob.

(3) Bob computes Encpk(xy) in the encrypted domain as follows:
Encpk(xy) = Encpk[(x − r)(y − s) + xs + yr − rs]

= Encpk[(x − r)(y − s)] · Encpk(x)s · Encpk(y)r · Encpk(−rs)

Protocol 1: Private multiplication MULT(Enc pk (x),Enc pk (y)).

After computing the proper quantization cell index from
the public table, Bob identifies all the candidates and then
engages with Alice in a joint secret matching process to deter-
mine if Alice’s probe resembles any one of the candidates.
This process is conducted in a multiparty computation and
communication protocol between Alice and Bob based on
Paillier homomorphic encryption. We assume that there is
an open network between Bob and Alice that will guarantee
message integrity. Since only encrypted content is exchanged,
there is no need for any protection against eavesdroppers.
For each session, Alice will be responsible for generating the
private and public keys for the encryption and sharing the
public key with Bob. In other words, a different set of keys
will be used for each different user. Furthermore this protocol
demands comparable computational capabilities from both
parties. Thus it is imperative to use the preprocessing step
to reduce the computational complexity of this matching
step. As the secret matching utilizes all the fundamental
processing blocks for the entire system, we will first explain
this component in the following section.

5. Homomorphic Encryption-Based ABAC

In this section, we describe the implementation of an ABAC
system on iris features using homomorphic encryption. The
system consists of three main steps: distance computation,
bit extraction, and secure comparison. Except for the first
step of distance computation which is specific towards iris
comparison, the remaining two steps and the overall protocol
are general enough for other types of biometric features and
similarity search. We shall follow a bottom-up approach by
first describing individual components and demonstrating
their safety before assembling them together as an ABAC
system.

5.1. Hamming Distance. The modified Hamming distance
dH(x, y) described in (2) is used to measure the dissimilarity
between iris patterns x and y which are both 9600 bits long
[51]. As the division in (2) may introduce floating point
numbers, we focus on the following distance and roll the
denominator into the similarity threshold during the later
stage of comparison

d̂H
(
x, y

)2 :=
∥
∥
∥
(
x ⊗ y

)∩maskx ∩masky
∥
∥
∥

2

2
. (9)

DIST (Protocol 2) provides a secure computation of the
modified Hamming distances between Alice’s probe q and
Bob’s DB. Alice needs to provide the encryption of individual
bits q = (q1, q2, . . . , qn)T and their negation to Bob. Even
though Bob can compute the negation in the encryption
domain by performing Encpk(¬qi) = Encpk(1 − qi) =
Encpk(1) · Encpk(qi)

−1, it is computationally more efficient
for Alice to compute them in plaintext as demonstrated in
Section 7. In step 1(a), Bob computes the XOR between
each bit of the query and the corresponding bit in each

record xi. d̂H(q, xi) can then be computed by summing
all the XOR results in the encrypted domain. Bob cannot
derive any information about Alice’s probe as the operations
are all performed in the encrypted domain. Alice does not
participate in this protocol at all. The complexity of DIST
includes O(Mn) encrypted-domain operations where M is
the size of DB and n is the number of bits for each feature
vector.

5.2. Bit Extraction. The next step is to compare the calculated
encrypted distance with a plaintext threshold. As comparison
cannot be expressed in terms of summation and multiplica-
tion of the two numbers, we need to first extract individual
bits from the encrypted distance. EXTRACT(Encpk(x)) (Pro-
tocol 3) is a secure protocol between Bob and Alice to extract
individual encrypted bits Encpk(xk) for k = 1, . . . , l from
Encpk(x), where x is a l-bit number. The idea is for Bob to ask
Alice’s assistance in decrypting the numbers and extracting
the bits. To protect Alice from knowing anything about x,
Bob sends Encpk(x + r) to Alice who then extracts and
encrypts individual bits Encpk[(x + r)k]. Except for the least
significant bit (LSB), Bob cannot undo the randomization
in Encpk[(x + r)k] by carrying out an XOR operation with
the bits of r due to the carry bits. To rectify this problem,
step 2(d) in EXTRACT zeros out the lower-order bits after
they have been extracted and stores the intermediate result
in y, thus guaranteing the absence of any carry bits from
the lower order bits during the randomization. Alice cannot
learn any information about y because the bit to be extracted,
(y + r)k, is uniformly distributed between 0 and 1. Plaintexts
obtained by Alice in different iterations are also uncorrelated
as a different random number is used by Bob in each
iteration. Even though Alice wants to make x as small as
possible to pass the comparison test, there is no advantage
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Require: Bob: xi for i = 1, . . . ,M, Encpk(qj) and Encpk(¬qj) for j = 1, . . . ,n

Ensure: Bob computes Encpk[d̂H(q, xi)
2] for i = 1, . . . ,M.

(1) For i = 1, . . . ,M, Bob repeats the following two steps:
(a) For k = 1, . . . ,n, compute

Encpk(qk ⊗ xik) =
⎧
⎪⎪⎨

⎪⎪⎩

Encpk(qk) if xik = 0,

Encpk(¬qk) otherwise
(b) Compute

Encpk[d̂H(q, xi)
2] = Encpk(

∑

k:[maskq∩maskxi ]i=1
qk ⊗ xik)

= ∏

k:[maskq∩maskxi ]i=1
Encpk(qk ⊗ xik)

Protocol 2: Secure computation of distances DIST(DB, Enc pk (qj), Enc pk (qj) for j = 1, . . . ,n).

of replacing her replies to Bob with any other value. Bob
is not able to obtain any information about x either as all
operations are performed in the encrypted domain. Based
on the security model introduced in Section 3, this protocol
is secure. The complexities of EXTRACT are l encryptions
and O(l) encrypted-domain operation for Bob, as well as l
decryptions and l encryptions for Alice. The communication
costs are 2l encrypted numbers.

5.3. Threshold Comparison. Based on the encrypted bit
representations of the distances, we can carry out the actual
threshold comparison. COMPARE(Encpk(xk), yk for k =
1, . . . , l) (Protocol 4) is based on the secure comparison
protocol developed in [14]. Step 2(a) accumulates the
differences between the two numbers starting from the most
significant bits. The state variable w = 0 at the kth step
implies that the bits at order k and higher between x and
y match perfectly with each other. Step 2(b) then computes
Encpk(ck) where ck = 0 if and only if w = 0, xk = 0, and
yk = 1. This implies that x < y. In other words, x < y is
true if and only if there exists ck = 0. In the last step, we
invoke the secure multiplication as described in Protocol 1
to combine all ck together into c which is the desired output.
Bob gains no knowledge in this protocol as he never handles
any plaintext data. The only step that Alice involves in is in
the secure multiplication. The adversarial intention of Alice
is to make c zero so as to pass the comparison test. However,
the randomization step in Protocol 1 provides no additional
knowledge nor advantage for Alice to change her input. Thus,
this protocol is secure. The complexities of COMPARE are 3l
encryptions and O(l) encrypted-domain operations on Bob
side, as well as 2l decryptions and l encryptions on Alice side.
The communication costs are 3l encrypted numbers.

5.4. Overall Algorithm. Protocol 5 defines the overall ABAC
system. Steps 1 and 2 show that Alice first sends Bob her
public key and the encrypted bits of her probe. Steps 3 and
4 use secure distance computation DIST (Protocol 2) and
secure bit extraction EXTRACT (Protocol 3) to compute the
encrypted bit representations of all the distances. Steps 4 and
5 then use secure comparison COMPARE (Protocol 4) and
accumulate the results into Encpk(u) where u = 0 if and

only if d̂H(q, xi)
2 < ε · ‖maskq ∩ maskxi‖2

2 for some i. To
determine if Alice’s probe produces a match, Bob cannot
simply send Alice Encpk(u) for decryption as she will simply
returns a zero to gain access. Instead, Bob adds a random
share r and sends Encpk(u + r) to Alice. The decrypted value
u + r cannot be sent directly to Bob for him to compute u.
Unless u = 0, the actual value of u should not be disclosed
to Bob in plaintext as it may disclose some information
about the distance computations. Instead, we assume the
existence of a Collision-Resistant Hash Function HASH to
which Bob and Alice share the same key pkH [50, Chapter 4].
Alice and Bob compute HASHpkH (u + r) and HASHpkH (r),
respectively. As the hash function is collision resistant, their
equality implies that u = 0 and Bob can verify that Alice’s
probe matches one of the entries in DB without knowing
the actual value of the probe. Since Alice knows nothing
about r, she cannot cheat by sending a fake hash value.
The complexities of Protocol 5 are O(M log2n) encryptions
and O(Mn) encrypted-domain operations for Bob, as well
as O(Mlog2n) encryptions and decryptions for Alice. The
communication costs are O(Mlog2n) encrypted numbers.

6. k-Anonymous BAC

In Section 5, we show that both the complexities and the
communication costs of the ABAC depend linearly on the
size of the database, making ABAC difficult to scale to large
databases. Inspired by the k-anonymity model, a simple
approach is to tradeoff complexity with privacy by quickly
narrowing Alice’s query into a small group of k candidates
and then performing the full cryptographic search only on
this small group. k will serve as a parameter to balance
between the complexity and the privacy needed by Alice.
This is the idea behind the k-Anonymous Biometric Access
Control system.

Definition 6.1. A k-Anonymous BAC (k-ABAC) system is a
BAC system on Bob’s database DB and Alice’s probe q with
the following properties at the end of the protocol.

(1) There exists a subset S ⊂ DB with |S| ≥ k such that
for all x ∈ DB \ S, Bob knows d(q, x)2 ≥ ε.
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Require: Bob: Encpk(x) where x is a l-bit number; Alice sk.
Ensure: Bob computes Encpk(xk) for k = 1, . . . , l with k = 1 being the LSB.

(1) Bob creates a temporary variable Encpk(y) := Encpk(x).
(2) For k = 1, . . . , l, the following steps are repeated

(a) Bob generates a random number r and sends Encpk(y + r) to Alice.
(b) Alice decrypts y + r, extracts the kth bit (y + r)k and sends Encpk[(y + r)k]

back to Bob.
(c) Bob computes Encpk(xk) := Encpk[(y + r)k ⊗ rk].

(d) Bob updates Encpk(y) := Encpk(y − xk2k−1) = Encpk(y) · Encpk(xk)−2k−1

Protocol 3: Bit extraction EXTRACT(Enc pk (x)).

Require Bob: Encpk(xk), Encpk(yk) and yk for k = 1, . . . , l; Alice: sk
Ensure Bob computes Encpk(c) such that c = 0 if x < y.

(1) Bob sets Encpk(c) := Encpk(1), Encpk(w) := Encpk(0).
(2) For k = l, . . . , 1 starting from the MSB, Bob and Alice compute

(a) Encpk(w) := Encpk[w + (xk ⊗ yk)] = Encpk(w) · Encpk(xk ⊗ yk)
(b) Encpk(ck) := Encpk(xk − yk + 1 + w) = Encpk(xk) · Encpk(yk)−1 · Encpk(1)·

Encpk(w)
(c) Encpk(c) := MULT(Encpk(c), Encpk(ck)).

Protocol 4: Secure comparison COMPARE(Enc pk (xk), yk for k = 1, . . . , l).

(2) Except for the value yBAC as defined in Definition 3.1,
Bob has negligible knowledge about q and d(q, x), for
all x ∈ DB, as well as the comparison results between
d(q, x)2 and ε for all x ∈ S.

(3) Except for the value yBAC, Alice has negligible knowl-
edge about ε, x, d(q, x), and the comparison results
between d(q, x)2 and ε for all x ∈ DB.

The definition of k-ABAC system is similar to that of ABAC
except that Bob can prematurely exclude DB \ S from the
comparison. Even though Alice may be aware of such a
narrowing process, the k-ABAC has the same restriction on
Alice’s knowledge about DB as the regular ABAC. There are
two challenges in designing a k-ABAC system.

(1) How do we find S so that the process will disclose as
little information as possible about q to Bob?

(2) How can Alice choose S that contains the element that
is close to q without learning anything about DB?

Sections 6.1 and 6.2 describe our approaches in solving
these problems in the context of iris matching.

6.1. k-Anonymous Quantization. A direct consequence of
Definition 6.1 is that if there exists an x ∈ DB such that
d(q, x)2 < ε, x must be in S. In order to achieve the goal
of complexity reduction, our approach is to devise a static
quantization scheme of the feature space Fn and publish it
in a scrambled form so that Alice can select the right group
on her own. To explain this scheme, let us start with the

definition of a ε-ball k-quantization. Define Bε(x) or the ε-
ball of x to be the smallest subset of Fn that contains all
y ∈ Fn with d(y, x)2 < ε. An ε-ball k-quantization of DB
is defined below.

Definition 6.2. An ε-ball k-quantization (eBkQ) of DB is
a partition Γ = {P1, . . . ,PN} of Fn with the following
properties:

(1)
⋃N

i=1 Pi = Fn and Pi ∩ Pj = φ for i /= j,

(2) For all x ∈ DB, Bε(x) ∩ Pj = Bε(x) or φ for j =
1, . . . ,N ,

(3) |DB∩ Pj| ≥ k for j = 1, . . . ,N .

Property 1 of Definition 6.2 ensures that Γ is a partition while
property 2 ensures that no ε-ball centered at a data point
straddles two cells. The last property ensures that each cell
must at least contain k elements from DB. The importance
of using an eBkQ Γ is that if Γ is a shared knowledge between
Alice and Bob, Alice can select Pj � q and communicate
the cell index j to Bob. Then Bob can compute S := DB ∩
Pj which must contain, if exists, any x where d(q, x)2 <
ε.

While a typical vector quantization of DB will satisfy
the ε-ball preserving criteria, the requirement of preserving
the anonymity of q imposes a very different constraint.
Specifically, we would like all the data points in S to be
maximally dissimilar so that no common traits can be
learned from S. This leads to our definition of k-Anonymous
Quantization (kAQ).
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Require: Bob: xi, i = 1, . . . ,M and ε; Alice: q
Ensure : Bob computes y = 1 if d̂H(q, xi)

2 < ε for some i and 0 otherwise
(1) Alice sends pk to Bob.
(2) Alice computes Encpk(qj) and Encpk(¬qj) for j = 1, . . . ,n and sends them to Bob.
(3) Bob executes DIST(DB, Encpk(qj), Encpk( qj) for j = 1, . . . ,n) to obtain

Encpk[d̂H(q, xi)
2] for i = 1, . . . ,M.

(4) For i = 1, . . . ,M, Bob and Alice execute EXTRACT(Encpk[d̂H(q, xi)
2]) to obtain the

binary representations Encpk[d̂H(q, xi)
2
k] for k = 1, . . . , �log2n
.

(5) Bob sets Encpk(u) := Encpk(1).
(6) For i = 1, . . . ,M, Bob and Alice computes

(a) Encpk(c) := COMPARE(Encpk[d̂H(q, xi)
2
k], (ε‖maskq ∩maskxi‖2

2)
k

for k =
1, . . . , �log2n
)

(b) Encpk(u) := MULT(Encpk(u), Encpk(c)).
(7) Bob generates a random number r, computes HASHpkH (r) and sends Alice Encpk(u + r).
(8) Alice decrypts Encpk(u + r), computes HASHpkH (u + r) and sends it back to Bob.
(9) Bob sets y = 1 if HASHpkH (r) = HASHpkH (u + r) and 0 otherwise.

Protocol 5: ABAC(DB, q).

Definition 6.3. An optimal k-anonymous quantization Γ∗ is
an eBkQ of DB that maximizes the following utility function
among all possible eBkQ Γ:

min
P∈Γ

∑

x,y∈P∩DB

d
(
x, y

)2

. (10)

The utility function (10) can be interpreted as the total
dissimilarity of the most homogeneous cell P in the partition.
The utility function also depends on the number of data
points in a cell—adding a new point to an existing cell
will always increase its utility. Thus finding the partition
that maximizes this utility function not only can ensure the
minimal amount of dissimilarity within a cell, but also can
promotes equal distribution of data points among different
cells. Given a fixed number of cells, it is important to
minimize the variation in the number of data points among
different cells so that the computational complexities of
the encrypted-domain matching in different cells would be
comparable.

It is challenging to solve for the optimal kAQ for the
iris matching problem due to the high dimension, 9600
to be exact, and the uncommon distance used. Our first
step is to project this high-dimensional space into a lower-
dimensional Euclidean space Rm by using Fastmap followed
by PCA. The Fastmap is used to embed the native geometry
of the feature space into an Euclidean space while the PCA
optimally minimizes the dimension of the resulting space.
Even in this lower-dimensional space, the structure of a
quantization, namely, the boundary of individual cells, can
still be difficult to specify. To approximate the boundary
with a compact representation, we first use a simple uniform
lattice quantization to partition Rm into a rectilinear grid
Ω consisting of L bins {B1, . . . ,BL}. Then, we maximize the
utility function (10) but force the cell boundary to be along
those of the bins. This turns an optimal partitioning problem
in continuous space into a discrete knapsack problem in

assigning bins to cells through a mapping function f to opti-
mize the utility function. The process is described in Figure 2.
We denote the resulting approximated k-quantization as Γ̂∗.

As the utility function (10) is based on individual data
points, a bin containing multiple ε-balls may present in
multiple cells. As such, Γ̂∗ is no longer a true partition
and the mapping function f is a multivalued function.
A probe falling in these “overlapped” bins will invoke
multiple cells, resulting in a larger candidate set S. Two
examples of such overlapped bins are shown in Figure 2.
This increases computational complexity and as such, it is
important to minimize the amount of overlap. Due to the
uneven distribution of data points in the feature space, a
global ε can inflate the size of balls in some area of the
feature space resulting in significant overlap problems. In
our implementation, we do not use ε balls but estimate the
local similarity structure by using multiple similar feature
vectors from each iris, and creating a “bounding box” which
is the smallest rectilinear box along the bin boundaries that
encloses all the bins containing these similar feature vectors.
If any bin in a bounding box is assigned to cell i, all the bins
in the bounding box will have an assignment of cell i.

Protocol 6 (KAQ) describes a greedy algorithm that com-
putes a suboptimized k-anonymous quantization mapping
function from the data. Step 1 of KAQ sets the number of
cells to be the maximum and the protocol will graduately
decrease it until each cell has more than k data points. The
initialization steps in 2 and 3 randomly assign a bounding
box into each cell. Step 4 identifies the cells that have the
minimum utility. Among these cells, steps 5 and 6 identify
the cell Pi∗ and the bounding box BB∗ which together
produce the maximum gain in utility. The bins inside BB∗

are then added to Pi∗ and the whole process repeats. This
update not only provides a greedy maximization of the
overall utility function but also has the tendency to produce
an even distribution of data points among different cells. A
newly updated cell will have a much lower chance of being
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P1

P2 P1

Overlapped bins
P′1

P′2 P′1

Figure 2: Approximation of the quantization boundary (a) along the bins (b). The number of bins k here is 3. There are also two bins that
are present in both cells.

updated again as it has a higher utility than others. The final
step checks to see if any one cell has less than k elements
and, if yes, restarts the process with fewer target number of
cells. For a fixed target number of cells, the complexity of
this greedy algorithm is O(M2) where M is the size of DB.
It is important to point out that the output mapping f only
contains entries of bins that belong to at least one bounding
box.

6.2. Secure Index Selection. Let us first describe how Alice and
Bob can jointly compute the projection of Alice’s probe q into
the lower-dimensional space formed by Fastmap and PCA.
The projection needs to be performed in encrypted domain
so that Alice does not reveal anything about her probe and
Bob does not reveal any information about his database, the
Fastmap pivot points and the PCA basis vectors. Note that
the need for encrypted-domain processing does not affect
the scalability of our system as the computation complexity
depends only on the dimension of the feature space but not
on the size of the database.

The Fastmap projection in (3) involves a floating point
division. The typical approach of premultiplying both sides
by the divisor to ensure that integer-domain computation
does not work. As the Fastmap update (4) needs to square the
projection, recursive computation into higher dimensions
will lead to a blowup in the dynamic range. To ensure all
the computations are performed within in a fixed dynamic
range, Alice and Bob need to agree on a predefined scaling
factor α and rounding will be performed at each iteration
of the Fastmap calculation. Specifically, given the encrypted
probe Encpk(q), Bob approximates the first projection q′ in
encrypted domain based on the following formula derived
from (3):

αq̃′ := round
(

α

2ad

)
d̂H
(
q, xA

)2 + round
(

α

2cd

)
d̂H(xA, xB)2

− round
(

α

2bd

)
d̂H
(
q, xB

)2,

(11)

where a = ‖maskq ∩maskxA‖2
2, b = ‖maskq ∩maskxB‖2

2, c =
‖maskxA ∩maskxB‖2

2, and d = dH(xA, xB). All the multipliers
on the right-hand side of (11) are known to Bob in plaintext
and the distances can be computed in the encrypted domain

using Procedure 2. Since rounding is involved, q̃′ is just
an approximation of q′ as computed with in the original
Fastmap formula (3). Based on the computed encrypted
values of aq′ from the probe and ax′ from a data point, the
update (4) is executed as follows:

α2d̃′H
(
x,q

)2 := round

⎛

⎜
⎝

α2

∥
∥∥maskx ∩maskq

∥
∥∥

2

2

⎞

⎟
⎠d̂H

(
x,q

)2

−
(
αx̃′ − αq̃′

)2
.

(12)

Bob again can compute the right-hand side of (12) entirely
in encryption domain, with the square in the second term

computed using Procedure 1. The value d̃′H(x,q)2 is again
approximated due to the rounding of the coefficient. Note
that the left-hand side has an extra factor of α which needs to
be removed so as to prevent a blowup in the dynamic range.

To accomplish that, Bob computes Encpk(α2d̃′H(x,q)2 + rα)
where r is a random number, and sends the result to Alice.
Alice decrypts it, divides it by α, and rounds it to obtain

round(α2d̃′H(x,q)2) + r. Alice encrypts the result and sends
it back to Bob who will then remove the random number r.

Bob can now use the new distances to project the probe
along the second pair of pivot objects xA′ and yA′ as follows:

α2q̃′′ := round
(

α

2d′

)
αd̃′H

(
q, xA′

)2 + round

(
α2

2

)

− round
(

α

2d′

)
αd̃′H

(
q, xB′

)2,

(13)

where d′ = d̃′H(xA′ , xB′)
2 can be computed by Bob in

plaintext. The extra factor of α on the left-hand side of
(13) can be removed with the help of Alice using a similar
approach as previously discussed. As the iteration continues,
the deviation of the rounded projection and the original
projection will grow as the rounding error accumulates.
However, the new distance computed at each iteration
absorbs the rounding error from the previous projection. As
a result, the distance in the projected space will approach
the underlying distance in a similar manner as the original
projection.
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Require Bob: Projection of DB into Rm or {P(xi) for i = 1, . . . ,M}; Bin and bounding box
structures in Ω;
Ensure Bob computes the multi-valued mapping f : Ω → {1, . . . ,N} that defines the cell
membership of each bin.

(1) Set the initial number of cells N := �M/k�.
(2) Let L := the list of bounding boxes in Ω
(3) Random initialization of cells: for i = 1, . . . ,N ,

(a) Randomly remove a bounding box BB from L.
(b) Set f −1(i) := {bins in BB}.

(4) Identify the collection of cells E with the lowest utility, that is,
E := arg mini=1,...,N

∑

x,y∈Ai∩DB
d(x, y)2

where Ai =
⋃

B∈ f −1(i) B contains all the bins in cell i.
(5) For each cell j in E, identify the bounding box BB∗j ∈ L that maximizes the utility of

cell j after adding BB∗j to it and denote the resulting utility as u∗j , that is,
BB∗j := argmaxBB∈L

∑

x,y∈(Aj∪BB)∩DB
d(x, y)2

u∗j := ∑

x,y∈(Aj∪BB∗j )∩DB
d(x, y)2

(6) Given j∗ = arg max j∈Eu∗j , identify the bounding box BB∗ := BB∗j∗ and cell Pj∗ that give
rise to the maximum gain of utility from step 5.

(7) Set f −1( j∗) := f −1( j∗)∪ {bins in BB∗} and remove BB∗ from L.
(8) Go back to Step 4 until L is empty.
(9) For i = 1, . . . ,N , ensure that |⋃B∈ f −1(i) B ∩DB| ≥ k. If not, set N := N − 1 and go

back to step 2.

Protocol 6: Greedy k-anonymous quantization KAQ.

In the computation of PCA projection, we scale each
basis vector with a large enough multiplier not only to
absorb the fractional parts of the basis vector but also the
scalar α used in Fastmap. Let the ith basis vector of PCA be
pi = η(pi1, pi2, . . . , pim1

)T where i = 1, . . . ,m2 with m2 being
the target PCA dimension. The encrypted-domain PCA
projection of the Fastmap projection of q can be computed
as follows:

Encpk
[
Ppca

(
Pf m

(
q
))

i

]
:= Encpk

[
Pf m

(
q
)Tpi

]

=Encpk

⎡

⎣
m1∑

j=1

αP f m
(
q
)
j

ηpij
α

⎤

⎦

=
m1∏

j=1

Encpk
[
αP f m

(
q
)
j

](ηpij /α)

≈
m1∏

j=1

Encpk
[
αP f m

(
q
)
j

]round(ηpij /α)
.

(14)

The scalar η is selected so that the loss of precision due to
rounding is sufficiently small.

The last step of the process is to quantize the projection
Ppca(Pf m(q)). We only consider the quantization step size
in powers of two so that the quantization process can be
performed in the encrypted domain. First, we use the secure
bit extraction routine EXTRACT to compute the binary
representation of Encpk[Ppca(Pf m(q))]. Then, we drop the
lower order bits based on the chosen stepsize. The resulting

bits are recombined to form the binary representation to the
encrypted bin index Encpk(B).

In order to obtain the cell index f (B), we need an addi-
tional cryptographic tool: a homomorphic collision-resistant
hash function hPKh(·) with the following homomorphic
property [52, 53]:

hpkh

(
x + y

) = hpkh(x) · hpkh

(
y
)
. (15)

Our implementation is based on [52]. Bob generates both
the public key pkh and the secret key for this hash function
and shares the public key with Alice. Instead of directly
publishing the mapping f (·) between the bin index and
the corresponding cell indices, Bob publishes an obfuscated
mapping f ′(·) such that f (B) = f ′(hpkh(B)). The hash
function sufficiently scrambles all the bin indices so that
the distribution of Bob’s data among all the bins classified
in the KAQ algorithm is disguised as random sampling
in the range of the hash function. To prevent Alice from
launching a dictionary attack on the table, the length of the
bin index must be large enough. This can be accomplished,
for example, by padding random projections of the query
to make the bin index longer. The cell indices will be
published without any obfuscation—little information is
leaked through them as it is shared knowledge between Alice
and Bob that there are roughly N/k distinct cell indices, each
of them occurring around k times.

The reason behind why we need the homomorphic
property (15) is to help Alice in computing hpkh(B). After
Bob finishes the computation of Encpk(B), he picks a random
r, computes hpkh(r) and Encpk(B − r), and sends them to
Alice. Alice then decrypts Encpk(B−r), computes hpkh(B−r),
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Require Alice: Probe q; Bob: Fastmap pivot objects, PCA basis, and quantization step-size in

PCA space, {2qi for i = 1, . . . ,m2}; Public: Scrambled Mapping f̃ , Deterministic homomorphic
cipher with unknown secret key Encpk∗ ,r∗ (·)
Ensure Bob gets f (B) where B ∈ Ω contains q

(1) Alice and Bob computes Encpk[Ppca(Pfm(q))i] for i = 1, . . . ,m2.
(2) Bob creates an empty list G := φ.
(3) Quantization of the projection: for i = 1, . . . ,m2,

(a) Bob and Alice execute R := EXTRACT[Encpk(Ppca(Pfm(q))i)] to get the encrypted
binary representation of the ith dimension of the projection of q.

(b) Bob discards qi lower order encrypted bits from R and add the remaining bits to the
set G.

(4) Bob recombines individual encrypted bits in G to create a single encrypted Encpk(B).
(5) Bob generates a random number r, compute and sends Alice Encpk(B − r) and hpkh (r).
(6) Alice decrypts Encpk(B − r), computes hpkh (B) = hpkh(B − r) · hpkh (r) and uses it look

up the cell indices f (B) = f ′(hpkh(B)).
(7) If f (B) has multiple cell indices, Alice will send the first one to Bob, wait for a random

amount of time, re-execute this entire procedure, and sends the second cell index. The
process is repeated until all cell indices in f (B) are exhausted or a match occurs.

Protocol 7: Secure cell index selection SELECT.

and uses the homomorphic property to compute hpkh(B) =
hpkh(B− r)·hpkh(r). After that, Alice performs a table lookup
to find f ′(hpkh(B)) = f (B). If there are multiple cell indices
in f (B), Alice should not send all of them to Bob because he
may use this information to significantly reduce the possible
choices of B as overlapped bins are rare. Instead, Alice should
send one cell index first. Then, she re-encrypts her probe and
reruns the entire dimension reduction and index selection
process as if she was a different user. The same f (B) will
be computed and Alice sends Bob the second index. The
whole process is repeated until all the cell indices in f (B) are
exhausted or a match occurs.

SELECT (Protocol 7) summarizes the above process on
how Bob can identify the cell to which q belongs. As for
the security of Protocol 7, steps 1 through 4 are processing
in encrypted domain and thus reveal no secrets to either
parties. Steps 5 and 6 allow Bob to identify the cell indices
to which q belongs. As we assume Bob to be semihonest, Bob
will not deviate from the protocol by adding any identifiable
information to the public table f ′(·). Alice has no incentive
to deviate from this protocol as a wrong cell index will erase
any chance of success in the subsequent encrypted-domain
matching with the elements in the cell. The complexities
of Protocol 7 are O(m1m2 + m2l) on Bob side and O(m2l)
on Alice side, where m1 is the Fastmap dimension, m2 is
the PCA dimension, and l is the bit length of the scaled
PCA coordinates. The communication costs are O(m1 +m2l)
encrypted numbers.

7. Experiments and Discussions

For our experiments, we use the CASIA Iris database from
the Chinese Academy of Sciences Institute of Automation
(CASIA) [54], a common benchmark for evaluating the
performance of iris recognition systems. For the iris feature
extraction, we use the MATLAB code from [51] to generate

both the iris feature vectors and the masks. Each iris feature
vector is 9600 bit long. The similarity threshold ε is set to
be 0.35. We select 1948 samples from CASIA based on the
following criteria: the distances are smaller than 0.35 between
any two samples from the same eye, and larger than 0.40
between any two samples from different eyes. Furthermore,
each eye contains at least six good samples and one sample
is set aside for testing. A total of 160 individuals are included
in our dataset. Our Paillier implementation is based on the
Paillier Library developed by J Bethencourt [55]. The key
length of the Paillier cipher is set to be 1024 bit which results
in 2048-bit ciphertexts.

7.1. Encrypted Domain Processing. In this subsection, we
summarize the complexity and communication costs of
various encrypted-domain processes discussed in this paper.
The communication cost is measured based on total amount
of information exchanged between Bob and Alice without
any overhead from the network stack. The computation
time excludes networking time and is computed based
on averaging 100 trials. All of them are implemented in
C language on a Linux machine with a 2.4 GHz AMD
Athlon 64 CPU and 2 GB memory. Table 1 summarizes the
results. Encrypted-domain addition and multiplication with
plaintext are relatively lightweight, except when the plaintext
multiplier is negative (i.e., a large positive number in
modular arithmetic). Multiplication between two encrypted
numbers (MULT) takes the longest and requires information
exchange between Bob and Alice. Hamming distance (DIST)
is fast as there are no encryption or decryption. Bit extrac-
tion (EXTRACT) takes longer and threshold comparison
(COMPARE) takes the longest due to the repeated use of
negative numbers, encryption and decryption processes. The
long computation time for Query preparation is primarily
due the high dimension of the iris feature. The overall
computation of an ABAC system consists of a fixed setup
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Figure 3: FRR versus FAR for using (a) the original feature space,
(b) 100d Fastmap and then m2 = 20 dimensional PCA, and (c) 100d
Fastmap and then m2 = 2 dimensional PCA.
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Figure 4: Histogram of overlapped bins.

time of query preparation followed by the time taken for
the remaining steps scaled by the size of the database. For
a database of 10000 iris, our ABAC system is estimated to
take 41,490 seconds or 11.5 hours and 120 MBytes of network
bandwidth. On the other hand, in a k-anonymous ABAC
system, the fixed setup time is the Query Preparation and
the SELECT process. The matching complexity depends only
on k but not on the size of the database, except for the rare
cases in which the probe falls into an overlapped bin. We
shall study the effect of the quantization on the number of
overlapped bins in details in Section 7.2. Apart from these
exceptions, for the same database of 10000 iris patterns using
a k-ABAC system with k = 50, the time required is only 650
seconds and the bandwidth is 1.3 MBytes.

7.2. k-Anonymous Quantization. In the k-ABAC system, we
first use Fastmap to reduce the original 9600-bits iris code
into 100-dimension Euclidean space. Then we use PCA again
to further reduce the dimension. Two PCA dimensions, 10
and 20, are tested in our experiments. These steps were
performed on a machine running Windows XP Pro. with
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Figure 5: Tradeoff between complexity and utility (privacy).

3.4 GHz Intel Pentium 4 CPU and 2 GB of RAM. The rum
times for Fastmap and PCA are 36.24 and 0.274 seconds.
There is a loss in performance in each step of projection
as the distances cannot be represented as accurately. The
plots of False Accept Rates (FAR) versus False Reject Rate
(FRR) for the original space and the two projected cases
are shown in Figure 3. The performance clearly declines as
the dimension decreases from 20 to 10. The consequence of
dimension reduction is that the similarity structure cannot
be well approximated in low dimensions. In defining the k-
Anonymous quantization, we rely on a uniform quantization
grid and similarity within a single iris is estimated based on a
bounding box of similar features. If the similarity structure is
poorly represented, bounding boxes begin to overlap. Probe
falling in overlapped areas may need to invoke multiple cells,
and thus increase the computational complexities. Figure 4
shows the histogram of the fraction of bins that overlap
different numbers of bounding boxes. For m2 = 20, 88%
of the bins are contained in only one bounding box and
96% in at most two bounding boxes. When the dimension
is reduced to m2 = 10, these numbers reduce to 55%
and 76%. Even though overlapped bins are not necessarily
classified into different cells by the KAQ algorithm, their total
number serves as the upper bound of bins with multiple cell
affiliations.

Next, we consider the performance of KAQ. This algo-
rithm, programmed in C language, was run on a machine
running Windows XP Pro. with 2.0 GHz AMD Athlon 64
CPU and 1 GB of RAM. The execution time is a function
of the size of the database and takes less than 2 milliseconds
to complete regardless of the parameters we used. We have
tested the algorithms for various values of k and for m2 = 10
and 20 dimensions. Table 2 summarizes the outputs of the
KAQ algorithm at m2 = 20. The first column shows the
input parameter k. The second column shows the average
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Table 1: Time and communication complexities of encrypted-domain processing.

Process Bob’s time in seconds Alice’s time in seconds Communication (Kbits)

Encryption Encpk(x) 17.3× 10−3 — —

Decryption Decsk(c) 12.8× 10−3 — —

Addition Encpk(x) · Encpk(y) 13× 10−6 — —

Multiplication Encpk(x)y , y ≥ 0 0.143× 10−3 — —

Multiplication Encpk(x)y , y < 0 30.1× 10−3 — —

MULT 47.9× 10−3 43.0× 10−3 3

DISTa 98× 10−3 — —

EXTRACTb 0.845 0.421 56

COMPAREb 2.06 0.602 42

Query preparation (Step 2 in ABAC) — 290 —

Remaining steps in ABACa 3.05 1.07 98

SELECTc 2149.842 3.455 5522
aAverage running time for each entry in DB amortized over 100 entries, with the dimension of each entry equal to 9600.
b14 bits operand are used as they are sufficient for the Hamming distance.
cFastmap dimension m1 = 100; PCA dimension m2 = 20 and l = 64.

Table 2: Output statistics of the KAQ algorithm at m2 = 20.

k Cell size Utility Cell utility Complexity

100 106.5± 4.0 73856 80262± 4885 160.2± 146

120 127.2± 4.7 106438 115881± 5532 189.5± 165

150 157.7± 5.8 174855 179855± 5818 232.1± 191

200 207.9± 5.1 311756 315252± 3016 300.1± 226

300 303.5± 5.0 673085 679503± 8149 423.7± 275

and standard deviation of the number of data points in each
cell. k is the lower bound of the cell size and KAQ manages to
produce consistent cell sizes with small variance. The third
column shows the utility function as defined in (10) which
measures the minimum level of privacy among all the cells.
The fourth column considers the average utility function
and its standard deviation over all the cells. Again, the
standard deviations are generally very small demonstrating
the consistency across different cells. The utility increases
with k as the bigger the k is, the more data points are grouped
into the same cell. On the other hand, neither the cell size
nor k is reliable metrics of complexity as they do not take
the overlapping among cells into consideration. To provide
a more realistic measure, we hold back one data point per
individual iris during the quantization construction and use
them to test the true complexity. Specifically, we measure
complexity based on the actual number of data points in the
union of cells that contains the testing probe. The results are
tabulated in the last column. The complexity number will
be larger than the cell size if the probe falls into a bin that
overlaps more than one cell and the number of data points
will at least double. The quantized increase in the number of
cells accounts for the large standard deviation. In general, the
complexity is roughly 1.5 times that of the average cell size.

Table 3 summarizes the results for KAQ m2 = 10. While
showing a similar trend as Table 2, there are a number of
major differences. All the measurements show a much higher
level of noise as compared with the previous experiments.

Table 3: Output statistics of the KAQ algorithm at m2 = 10.

k Cell size Utility Cell utility Complexity

100 153.9± 52 44074 87421± 67533 567.7± 354

120 162.4± 49 50965 95583± 65760 582.9± 355

150 182.5± 41 79450 118268± 59472 635.3± 377

200 224.1± 26 145441 176631± 42509 724.2± 404

300 315.3± 7.9 332649 358721± 12955 900.8± 436

This is due to the significant amount of overlapping among
bounding boxes. Thus, even when the KAQ algorithm tries
to evenly spread the data points, the overlapping forces
bounding boxes to be in many cells at the same time. As
a consequence, the complexity numbers are much higher
than those from KAQ at m2 = 20. The utility numbers also
decrease from before as the distance measurements are not as
well preserved.

As there are no comparable quantization schemes in
the literature for maximizing privacy, we have chosen,
as a reference scheme, random cell assignment for each
bounding box at a target number of cells. We call this scheme
RANDOM and it is a sensible choice for ensuring individuals
with similar iris features to be grouped at a random manner.
The testing methodology is that we would first run the
KAQ algorithm approach for a specific k, and then use the
same number of cells for RANDOM. Ten random trials of
RANDOM are run at each operating point. The results for
m2 = 20 are summarized in Table 4. As expected, RANDOM
shows a significant drop in utility as no explicit optimization
mechanism is used. The complexity numbers are comparable
to those of KAQ as they are mostly a function of the geometry
of the data distribution which dictates the overlapping of the
bounding boxes.

We finally present the idea of trading off complexities
with privacy, as measured by the utility function. We plot the
complexity versus utility for all the three schemes in Figure 5.
We have left out the error bars as the standard deviation
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Table 4: Output statistics of the RANDOM algorithm at m2 = 20.

Cell size Utility Cell Utility Complexity

102.5± 46 963.0± 764 21620.7± 18805 183.0± 155

121.8± 50 2104.8± 694 29927.7± 23258 242.9± 230

150.8± 57 7732.1± 3192 45517.4± 34276 275.1± 237

196.9± 65 11747.6± 5714 76586.2± 48475 327.4± 259

285.2± 71 50150.8± 17737 156620.9± 71238 447.3± 335

for the complexity numbers is not meaningful due to the
quantized effect of cell increase. This figure demonstrates
that the KAQ algorithm provides a good level of privacy
protection as the curves for both dimension reside on the
high end of utility. While KAQ at m2 = 10 does not scale well
when a high level of privacy is needed, KAQ at m2 = 20 stays
relatively linear. RANDOM is not able to offer much privacy
protection.

8. Conclusions

In this paper, we have proposed a design for the Anonymous
Biometric Control System (ABAC) which allows a biometric
server to verify the membership status of a user without
knowing his/her identity. The system is composed of various
secure multiparty protocols including Hamming distance
computation, bit extraction, comparison and result aggre-
gation, all implemented with a homomorphic cipher. To
reduce the computational and communication complexities
of such a system, we have proposed a framework called
the k-Anonymous ABAC system that tradeoffs privacy and
complexity by quantizing the search space into cells, each of
which contains at least k members. Complexity is reduced by
restricting the encrypted domain search process to a small
number of cells. Privacy is measured by the dissimilarity of
the smallest cell. A greedy quantization scheme on a reduced-
dimensional space called k-Anonymous Quantization has
been devised to derive the optimal quantization that max-
imizes privacy. Secure procedures have been proposed to
perform the dimensional reduction and cell lookup. Exper-
imental results on a dataset of iris patterns demonstrate the
effectiveness of our techniques in terms of balancing privacy
and computational costs. We are currently investigating the
extension of the proposed systems to handle a broader class
of malicious behaviors. Also, we are interested in improving
the efficiency of the homomorphic cipher, particularly in the
case when small plaintext numbers are used. Another topic
under investigation is the scalability of the k-Anonymous
Quantization to a much larger dataset.
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