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1. Introduction

Quantization index modulation (QIM) [1] is a wide class of
watermarking methods which are proven to yield optimum
performance in additive white Gaussian channels without
downgrading the host signal fidelity. The main drawback
of quantization-based schemes is their sensitivity to valu-
metric distortions; these attacks vary the amplitude of the
watermarked signal so that, even if they do not usually
reduce the perceived quality of the media, the produced
mismatch between encoder and decoder lattice volumes
severely increases the bit-error rate (BER). Consequently,
a great effort has been spent by researchers in developing
quantization-based methods robust to valumetric distor-
tions and the problem can be considered somewhat solved
by different approaches, that is, [2–4].

Linear-time-invariant (LTI) filtering attack is in some
sense related to valumetric distortions; in spite of the sim-
plicity and wide use of filtering in signal processing, literature
about this attack for quantization-based schemes is scarce.
This is even more dramatic since basic quantization-based

schemes are not able to cope with filtering attacks; in fact it
has been proven that by cutting away with a lowpass filter
only one percent of the signal spectrum, the resulting BER
for binary time-domain Dither Modulation (DM) is already
0.5 [5].

Apart from the work done by Wang et al. [6], where
the decoder is assumed to have some information about the
attack filter and the maximum-likelihood criterion is used
to estimate the frequency gain, the LTI filtering attack has
been addressed only in [5]. In that work, it is proposed an
extension of the rational dither modulation (RDM) scheme
[4], which is robust to LTI filtering without assuming any
prior knowledge about the attack filter. The main idea relies
on the amplitude scaling invariance of RDM and on the
convolution theorem [7], so that an RDM-like channel is
constructed on a subset of the frequency channels in the
discrete Fourier transform (DFT) domain. Analytical and
experimental results in [5] demonstrate that a high-rate
can be reached for white Gaussian hosts, but experiments
carried out with audio signals have shown a severe loss of
performance for nonstationary, non-Gaussian, and colored
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hosts. On the other hand, the analysis developed in [5] is
focused uniquely on white Gaussian hosts, so that it cannot
be straightforwardly used to justify the experimental results
obtained for nonwhite hosts.

In this paper the behavior of DFT-RDM for Gaussian
colored hosts is investigated. By modeling the colored host
with an autoregressive (AR) [7] random process, the analysis
of DFT-RDM is generalized, providing an explanation for the
loss of performance with respect to white Gaussian hosts.
This is essentially due to the combination of two facts: (1)
the power of an RDM watermark signal is proportional to
the host signal power, and (2) the influence of the nonflat
power spectral density (psd) of the host on the self-noise
that in turn is due to a block-DFT operation. Moreover, we
introduce the per-channel watermark-to-noise ratio (WNR)
as a simple measure to evaluate the reliability of each RDM-
like channel.

We also propose an extension of DFT-RDM that
improves performance in the case of colored hosts under
the hypotheses of a blind watermarking scheme and total
ignorance about the attack filter both at the embedder and
the decoder. In such case, low error probabilities are obtained
by performing DFT-RDM embedding and decoding after
a whitening operation, without any penalty in terms of
embedding distortion and payload.

The paper is organized as follows. In Section 2 some
notations are introduced while DFT-RDM is revised in
Section 3. The behavior of DFT-RDM with a Gaussian
colored host is analyzed in Section 4 and in Section 5 the
proposed extension of DFT-RDM is presented. Numeri-
cal simulations that validate the developed analysis and
show the performance of the proposed approach are given
in Section 6; finally in Section 7 some conclusions are
drawn.

2. Notation

We assume 1D real-valued hosts arranged in vectors, which
are denoted by boldface letters, so that x is a vector and xl
is its lth element. As customary in data-hiding applications,
if the vector x is the host signal, after the watermark
embedding the watermarked signal is denoted by y and the
watermark signal is by definition w � y − x. The vector z
denotes the samples received by the decoder at the channel
output.

Uppercase letters will be used for random variables, that
is, Xl is a random variable modeling the lth sample of the
host signal, and {Xl} is the random process related to the
whole sequence {xl}. Finally, to denote a variable in the DFT
domain, the tilde will be used, so that the random variable
˜Xm,k is the kth coefficient of the DFT computed on the
mth block of the host signal. Similarly, if hl is the impulse
response of a real-valued LTI filter, H(e jω) denotes its Fourier

transform so that we have ˜hk � H(e j2πk/N ).
Finally, for zero-mean hosts we define the document-to-

watermark ratio (DWR) as the ratio between the host signal
variance σ2

x and the embedding distortion Dw, which is the
average power of the watermark signal, as customary.

3. Review of DFT-RDM

The discrete Fourier transform-rational dither modulation
(DFT-RDM) method has been proposed in [5] to counteract
linear-time-invariant (LTI) filtering. This scheme is based
on RDM [4], which is a high-rate quantization-based data-
hiding method invariant to amplitude scaling, and on the
convolution theorem [7], which allows to represent the filter
output as a multiplication in the Fourier domain of the input
signal and the filter response.

In a real application DFT-RDM uses the discrete Fourier
transform in a block-by-block basis instead of the full-
sequence Fourier transform [5], which would be impractical
due to its computational complexity and the memory
required by RDM. In the adopted framework the exact mul-
tiplication in the DFT domain would only be achieved with a
circular convolution, whereas the filtered signal is obtained
through an ordinary convolution. As a consequence, the
effect of filtering on each DFT channel cannot be modeled
by a pure scaling, but a host-dependent error has to be
considered too.

Assuming nonoverlapping DFT blocks of lengthN , let xm
be themth block of the host signal and x̃m,k the kth coefficient
of the DFT of such block:

x̃m,k =
N−1
∑

l=0

xm,l exp
(

− j
2πk
N

l
)

. (1)

The information bits are embedded into the absolute
value of the DFT coefficients, taking care in preserving the
symmetry of the DFT for real signals. Essentially, on each of
the first N/2 + 1 discrete frequencies an RDM-like channel
is constructed so that the absolute value of the watermarked
signal is

∣
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where ỹm−1,k � ( ỹm−1,k, ỹm−2,k, . . . , ỹm−L,k)T and 0 ≤ k ≤
N/2. The phase of ỹm,k is set equal to the phase of x̃m,k

so that the embedding distortion is minimized; in order
to preserve symmetry, the remaining DFT coefficients are
updated according to the rule ỹm,k = ỹ∗m,N−k for N/2 +
1 < k < N , where the superscript ∗ denotes the complex
conjugate. The watermarked signal is then mapped back into
the original domain through a nonoverlapping block-by-
block inverse DFT of the marked coefficients:

ym,l = 1
N

N−1
∑

k=0

ỹm,k exp
(

j
2πl
N

k
)

. (3)

Due to the orthogonality of the DFT, the DWR in the
DFT domain is identical to that in the time domain. Hence
DFT-RDM inherits from the standard RDM the relations
between quantization step-size, power of the watermark
signal and DWR. It is worth noting that all the RDM-
like channels use the same quantization step-size, which is
computed from the knowledge of the target overall DWR.

At the decoder, with zm denoting the mth block of the
received signal, the relative DFT coefficients are computed
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Figure 1: Block scheme of the whole embedding/decoding chain for DFT-RDM.

and the standard RDM decoder is then applied to estimate
the embedded information bits. Assuming zl = yl ∗ hl,
under the hypothesis of N sufficiently large to approximate

an ordinary convolution, we have z̃m,k ≈ ˜hk ỹm,k, from which
the RDM decoder is able to recover the correct information
bits. The whole embedding/decoding block scheme is shown
in Figure 1.

Due to the effects of the circular convolution, the random
variable representing the kth received DFT coefficient can be

written as ˜Zm,k = ˜hk( ˜Xm,k + ˜Wm,k + ˜Nm,k), where ˜Nm,k models
the deviation from a pure multiplication (which would
correspond to full-length DFTs) and so it will be referred
to as per-channel multiplication error. Under the hypothesis
of large DWR and using the filter-bank interpretation of the
DFT [7], this term can be expressed as

˜Nm,k≈ Xl ∗ fl,k
∣

∣

l=mN+N−1 , (4)

where fl,k is given by

fl,k �
(

hl
˜hk
− δl

)

∗ φ∗l,k, k = 0, 1, . . . ,N − 1, (5)

and, by definition, φl,k � vl exp(− j2πlk/N) for l, k =
0, . . . ,N − 1 and is zero otherwise, with δl denoting the
Kronecker’s delta. Here φl,k represents the impulse response
of the kth DFT basis function multiplied by a window v =
(v0, v1, . . . , vN−1)T whose purpose will be made clear shortly.
Hence, from (4) and (5) it can be seen that the per-channel
multiplication error is strictly dependent on both the filter
coefficients hl and the host signal. Let {Xl} be a zero-mean
white process with variance σ2

x , then the process { ˜Xl ∗ fl,k}
can be assumed stationary as discussed in [5], and so ˜Nm,k

will approximately have zero mean and variance:
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where Φ(e jω) is the Fourier transform of the window v.
To reduce the error probability, in [5] two improvements

have been proposed: windowing and spreading. The former
entails multiplying the block xm by a properly designed
window v before computing the DFT coefficients at the
price of an increased peak-to-average distortion. The latter
amounts to adding M length-N blocks xm and then applying
the DFT-RDM embedding on N samples. By spreading, the
robustness against filtering is increased while the payload is
reduced by a factor of M.

Full details on DFT-RDM and its performance can be
found in [5], where guidelines are provided for the case of
white Gaussian hosts to assist the designer in the parameter
selection that leads to acceptable BER values. Unfortunately,
the results of some experiments with audio signals (which are
nonstationary, non-Gaussian and colored hosts) reported in
[5] show a considerable increase of the BER with respect to
white Gaussian hosts using the same system parameters.

4. Performance Analysis for
Colored Gaussian Hosts

In this section the analysis of DFT-RDM is extended to
colored hosts using a frequency-domain approach and intro-
ducing some new tools. As shown in Section 6, and similarly
to the experimental results for audio signals reported in [5],
if a watermark is embedded in a colored host using DFT-
RDM and then filtered with a conventional audio equalizer,
the measured BER is noticeably greater than the BER for a
white host using the same system parameters. The rationale
for this behavior can be found in the inner working of DFT-
RDM, which is essentially an RDM-like scheme for every
DFT channel, and in the influence of a nonflat psd on
the per-channel multiplication error. In [5] this error was
characterized in the time domain; in contrast, we pursue here
a frequency-domain approach, which is needed to separate
each RDM-like channel and will lead to a somewhat simpler
expression. However, the main novelty of our analysis lies
in the usage of the per-channel watermark-to-noise ratio
(WNR), which is a very convenient and intuitive measure
that is directly related to the BER.

To better understand the behavior of DFT-RDM for
audio signals, we have focused on colored Gaussian hosts
modeled by an Autoregressive (AR) random process [7].
Hence, given a zero-mean white Gaussian host x0 with psd
σ2
x0

, the colored host x can be regarded to as the output of an
all-pole filter HAR(z) = 1/A(z) excited by x0. The host power
spectral density can then be written as

Sx
(

e jω
)

= σ2
x0

∣

∣A(e jω)
∣

∣
2 . (7)

The idea is to work with a colored host whose psd resembles
that of a generic audio signal, which typically has most of
its power concentrated at lower frequencies. Hereinafter for
colored hosts we will assume an AR signal which models the
spectral contents of this generic audio signal.

We are interested in evaluating the performance (as
measured by the BER) on each DFT channel; to this end, we
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will rely on the watermark-to-noise ratio (WNR). It is very
important to remark that while the WNR is usually defined
as the ratio between the powers of the watermark signal and
the attack noise, since in our framework the only impairment
is the filtering, we will define the per-channel WNR as the
ratio between the power of the watermark signal and that of
the multiplication-error for each frequency channel:

WNR(k) �
E
{
∣

∣

∣
˜Ym,k − ˜Xm,k

∣

∣

∣

2
}

σ2
˜N
(k)

, (8)

where E{·} denotes the statistical expectation.
As a first step towards obtaining the per-channel WNR,

the per-channel host power in the DFT domain has to be
derived. To this aim, the filter-bank interpretation of the DFT
[7] can be adopted, according to which it is possible to get

˜Xm,k = Xl ∗ φ∗l,k
∣

∣

∣
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. (9)

The variance of the zero-mean process ˜Xm,k is given by
σ2
˜X
(k) = E{|Xl ∗ φ∗l,k|2} and can be computed by applying

Parseval’s relation, so that we have
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According to the corresponding relation in [4] and for
p = 2 in the g function, after the RDM embedding, the per-
channel watermark signal power is

σ2
˜W

(k) = Δ2

3
σ2
˜X
(k), (11)

where the quantization step-size Δ is set to have a water-
marked signal with the desired DWR. Since the per-channel

watermark signal power is proportional to the per-channel
host power because of the properties of RDM, a larger water-
mark signal originates from those host DFT channels having
stronger spectral contents. Hence, in the lower frequencies
of an audio-like colored host, the per-channel watermark
signal will be much larger than the corresponding to higher-
frequencies. This shaping of the per-channel watermark
power alters the behavior of DFT-RDM with respect to that
of a white Gaussian host, where the per-channel watermark
power is uniform, as analyzed in [5].

On the other hand, the spectral shaping of the host
influences also the per-channel multiplication error, which
for high DWRs can be approximated by ˜Nm,k = (Xl + Wl) ∗
fl,k|l=mN+N−1 ≈ Xl ∗ fl,k|l=mN+N−1, as it has been explained
in Section 3.

Recalling (6) and assuming reasonably the stationarity of
˜Nm,k, its variance can be written as
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(12)

The watermark-to-noise ratio can be useful to infer
whether the RDM channel is able to correctly convey
the information bits, because the probability of the error
approaches 0.5 when the power of the watermark signal is
approximately equal to that of the additive noise. Thus, the
per-channel WNR is computed as the ratio between (11) and
(12):

WNR(k) =
(

Δ2/3
)∫ π
−π
∣

∣Φ
(

e jω
)∣

∣

2
∣

∣

∣1/A
(

e j(ω+2πk/N)
) ∣

∣

∣

2
dω

∫ π
−π
∣

∣Φ(e jω)
∣

∣
2∣
∣1/A

(

e j(ω+2πk/N)
)∣

∣

2∣
∣1−H

(

e j(ω+2πk/N)
)

/H
(

e j2πk/N
)∣

∣

2
dω

. (13)

To easily understand the influence of the spectral shaping
of the host on the WNR, it is useful to approximate the per-
channel host power as

σ2
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(k) ≈ N
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2 . (14)

By this approximation, which is valid only in the case of a
rectangular window, the effects of computing the DFT on
finite-length blocks are neglected. Consequently, the WNR
can be approximated as follows:
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Figure 2: RA(ω, k) versus discrete frequency for k = 25 and k = 250
(N = 512).

If the host signal is white, then the ratio RA(ω, k) �
|A(e j2πk/N )/A(e j(ω+2πk/N))| is equal to 1 for every k and conse-
quently WNR(k) depends only on the attack filter; if the host
is colored, this ratio is a function which has great variations
for the different channels k thus affecting heavily WNR(k).
As shown in Figure 2, because of the high-pass behavior of
A(z), for k corresponding to the high-frequency channels,
the function RA(ω, k) takes values much larger than those
corresponding to low frequencies. Therefore, the spectral
shaping of the host yields less robustness in high-frequency
channels compared to low-frequency channels; however,
strictly speaking, the per-channel WNR also depends on the
attack filter, as is evident from (15).

In [5] the per-channel bit-error probability has been
derived analytically relying on the results in [4], where the
bit-error probability of an RDM channel is derived for i.i.d.
host samples and additive noise independent of the host
signal. If Pe,RDM(L, s) denotes the bit-error probability of
classical RDM, with s the effective signal-to-noise ratio, the
bit-error probability of the kth channel of DFT-RDM is

Pe(k) = 1
2π

∫ π

−π
Pe,RDM

(

L,
Δ σ

˜X(k)

σ
˜N (k, θ)

)

dθ, (16)

where σ
˜N (k, θ) is the magnitude of the per-channel multipli-

cation error projected onto e jθ ; see [5].
An upper bound for the bit-error probability was also

provided in [5]. Since the bound σ
˜N (k, θ) ≤ σ

˜N (k) is always
verified for every θ, the upper bound can be computed by
substituting σ

˜N (k, θ) in (16) by the standard deviation of the
per-channel multiplication error σ

˜N (k). Refer to [5] for more
details on the analysis.

The upper bound formula allows to link directly the
per-channel WNR and the per-channel bit-error probability.
In fact, according to (11), we can substitute σ

˜X(k) =

(
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3/Δ)σ
˜W (k) into (16) and using the bound σ
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If this analytical model is applied to colored hosts, the
predicted error probabilities will be only an approximation
of the actual BERs. The inaccuracy of the analytical model
is expected to be noticeable for those DFT channels whose
˜Xm,k is more correlated with the neighboring channels; in this
case, the per-channel multiplication error will increase due
to the leakage from those host samples at adjacent channels.
To evaluate the correlation between the kth channel and the
tth channel, the correlation coefficient ρk,t can be employed.
Using the approximate expression of the per-channel host
power we can write

ρk,t �
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The analysis carried out here for DFT-RDM and colored
hosts gives a first explanation of the experimental results that
were given in [5] for DFT-RDM applied to audio signals.

5. Whitening and DFT-RDM

From the analysis of DFT-RDM for colored hosts developed
in Section 4, any colored host will have unavoidably different
watermark signal powers for different DFT channels; conse-
quently, there will be some DFT channels more exposed than
others to the per-channel multiplication error, as it has been
explained above. Assuming that neither the embedder nor
the decoder has any prior knowledge about the attack filter,
it is reasonable to embed in every DFT channel with the same
watermark power. Clearly, this choice does not assure the best
BER for every attack filter but it is a trade-off to have a good
BER even if the attack filter is unknown. The optimum would
be to shape the per-channel watermark power so that it is
larger in those DFT channels which are less modified by the
attack filter, but this assumes prior knowledge; so we have
decided not to follow this path.

On the other hand, according to [5], if the host signal is
white, the per-channel multiplication error is approximately
independent on both the host and the watermark signal, so
the correlation between neighboring channels, which usually
leads to higher per-channel error probabilities, becomes
small.

These considerations lead to whiten the host signal and
use the same embedding power on every DFT channel.
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The idea is then to perform the DFT-RDM embedding in
the host signal xW obtained as the output of a whitening
filter Aw(z) excited by the colored host x. Hereinafter the
superscript W is used to denote signals which are obtained by
whitening. After the embedding, the watermarked signal yW

is filtered by the inverse of the whitening filter to reshape the
signal, as shown in Figure 3, where the whole block scheme
is depicted. At the decoder side the received host signal z
feeds the whitening filter Aw(z) and from the obtained signal
zW the DFT-RDM decoder recovers the estimated hidden
message.

In this section we will assume that the host is an AR
random signal which is generated as described in Section 4
by the all-pole filter 1/A(z). If the whitening filter Aw(z) is
equal to A(z), then we have xW = x0, which is a white
Gaussian host with power spectral density σ2

x0
by construc-

tion of the colored signal. After DFT-RDM embedding, the
watermarked signal can be expressed as yW = xW +wW . Since
DFT-RDM embedding is performed on the white signal x0,
the resulting watermark signal wW can be also assumed to
be white and uncorrelated with the host signal from the
properties of DFT-RDM. Consequently, the reconstruction
filter shapes both the host and watermark signal in the same
way, so that their power spectral densities have approximately
the same trend, as it is shown in Figure 4.

Moreover, given the whiteness of the watermark signal
and the superposition principle, the overall DWR is not

changed by the reconstruction filter:

DWR = σ2
x

σ2
w
=
∫ π
−πσ2

x0
/
∣

∣A(e jω)
∣

∣

2
dω

∫ π
−πσ

2
wW /

∣

∣A(e jω)
∣

∣
2
dω

= σ2
x0

σ2
wW

, (19)

and it is approximately equal to the DWR measured on
each DFT-RDM channel, as expected according to (11).
Thus, even if DFT-RDM is applied to the host signal after
whitening, the relation between the overall DWR and Δ is the
same as in DFT-RDM, as described in [5]. From this it can
be inferred that DFT-RDM with whitening does not incur in
any penalty in terms of embedding distortion with respect
to DFT-RDM, which is a desirable property of the proposed
extension.

At the decoder side, after the whitening filter Aw(z), we
have zW

l = yW
l ∗ hl; hence the white watermarked signal yW

goes through an equivalent channel where there is only the
attack filter. Consequently, even if the host is colored, using
the above proposed scheme we expect the same performance
as for DFT-RDM applied to a white host for the same attack
filter and the same system parameters.

We have tested the above presented scheme with audio
signals. Since audio signals are nonstationary and the
whitening filter Aw(z) is the inverse of an AR filter which
resembles the spectral contents of a generic audio signal, we
can no longer expect xW to be really a white signal. However,
xW will usually have a per-channel host power more evenly
distributed than the original host.

6. Experimental Results

Some experiments are here presented to validate the analysis
carried out in Section 4 and to verify the effectiveness
of DFT-RDM applied to colored hosts after a whitening
filtering. In all the experiments the DWR was set to 25 dB,
in the g function the memory L was set to 100 and p was
set to 2. An AR model with order Q = 10 is assumed in all
the experiments. Unless otherwise specified, we assume that
the DFT length is N = 512 and that neither spreading nor
windowing is used.

The colored host signal is the output of an all-pole
filter 1/Aav(z) whose coefficients have been obtained by AR
modeling of several audio tracks in order to resemble the
power spectral density of a generic (average) audio signal;
Figure 5 represents the magnitude of the frequency response
of the filter Aav(e jω) that has been used in the subsequent
simulations.

Figure 6 illustrates the per-channel watermark signal
power; while the matching between the experimental results
and the analytical values obtained substituting (10) in (11)
is excellent, a mismatch in the high-frequency channels is
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Figure 5: Magnitude of the frequency response of the filter Aav(e jω)
with order Q = 10.
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Figure 6: Per-channel watermark signal power in dB (σ2
x0
= 1000

and N = 256).

apparent when using in (11) the approximate formula (14)
for the per-channel host power.

In order to verify the existing correlation between
channels for colored hosts, the magnitude of the correlation
coefficient |ρk,t| has been evaluated on the watermarked
signal ˜Ym,k according to (18).

First, we plot in Figure 7 the magnitude of the correlation
coefficient for several DFT channels when the watermarked
signal is white Gaussian. As it can be verified, the correlation
between neighboring channels is very small for all k, t,
with k /= t. Obviously, for k = t we have ρk,t = 1, since
the correlation coefficient corresponds to the normalized
autocorrelation.
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Figure 7: Magnitude of the correlation coefficient |ρk,t| for white
watermarked signal evaluated at channels k = 5, k = 50, k = 150,
and k = 250.
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Figure 8: Magnitude of the correlation coefficient |ρk,t| for colored
watermarked signal evaluated at channels k = 5, k = 50, k = 150
and k = 250.

In contrast, for a colored host the correlation coefficient
is strictly dependent on the selected channels, as it is evident
in Figure 8. As expected from (18) for a high-pass filter A(z),
the correlation between two low-frequency neighboring
channels is quite small, while it noticeably increases when
neighboring higher-frequency pairs are considered. Since
the analytical results are less accurate when DFT channels
become more correlated, we should expect worse predictions
for high-frequency channels.

Then we have tested the watermarking system with
a lowpass filter with cut-off frequency ωc = 0.8π rad.
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Figure 9: WNR versus DFT channel for colored host and lowpass
filter with ωc = 0.8π.

Figure 9 compares the experimentally evaluated WNR with
the analytical WNR computed according to (13) and the
analytical approximation of the WNR obtained from (15).
It is worth noting that the WNR is much larger for the low-
frequency channels where the host power is also larger and
the filter response is flat. In Figure 10 the experimental BER
is compared with the analytically derived BER and its upper
bound, according to the formulas in [5] (here and in the
following, the analytical BER is computed using the exact
formula of the per-channel signal power); here we show only
the range of channels having an experimental BER larger
than 10−5. From the comparison of Figures 9 and 10 it can
be verified that the error probability is approximately 0.5 for
those DFT channels whose WNR is lower than 0 dB, as we
have already discussed.

To understand how different AR models influence the
WNR, the analytical WNR for the lowpass filter has been
computed using (13) for different orders Q of the AR model.
In Figure 11 the WNR for AR(10) is compared with the
analytical WNR computed for AR(3), AR(7), AR(50) and
AR(100). For Q = 3 the WNR is slightly lower than that of
Q = 10, while for Q = 7 approximately the same WNR of
Q = 10 is obtained. As the order of AR model increases, the
WNR has more ripples but it has always the same average
trend of that for AR(10), as it is shown in Figures 11(c) and
11(d). We conclude that the order of the AR model has little
impact on the final results.

Then we have tested the watermarking system with a
lowpass filter having passband [0, 0.4π] rad and stopband
[0.8π,π) rad, with a smooth transition in the middle.
Figure 12 compares the experimental WNR and the analyti-
cal one; there is a noticeable difference in the frequency range
where the interchannel correlation is larger. In Figure 13 the
experimental BER is compared with the analytically derived
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Figure 10: BER versus DFT channel for colored host and lowpass
filter with ωc = 0.8π.

BER and its upper bound (again only the range of channels
having an experimental BER larger than 10−5 is shown).
Moreover, it can be seen that the analytical error probability
matches the experimental one since all the channels with
Pe < 0.5 are not in the range of high correlation. It is worth
noting that the error probability is approximately 0.5 in the
majority of channels belonging to the transition band, which
is approximately between channels 102 and 204.

Finally, a ten-band graphic audio equalizer has been used
as attack filter. In the following experiments we have set the
equalizer subband filters so that they produce the overall
frequency response depicted in Figure 14, which is the same
that was used in the experiments presented in [5]. Figures 15
and 16 illustrate the analytical WNRs and the comparison of
the experimental BERs with the analytical ones, respectively.
From the per-channel WNR shown in Figure 15 it can be
inferred that the expected error probability will be very high,
especially for the high-frequency channels, and this behavior
is confirmed by the experimental BERs shown in Figure 16.
One can also notice that the analytical error probabilities
provide a good prediction only for the low-frequency
channels. We conjecture that the observed inaccuracies are
due to the correlation among neighboring channels of the
colored host, which could be increased even further by
the equalizer. Above all, this experiment reveals that DFT-
RDM applied to a colored host does not guarantee at all
the robustness of the watermark against an equalizer attack,
especially as neither windowing nor spreading is here used,
since the overall BER is approximately 0.48. It is worth noting
that by embedding the watermark with the same system
parameters into a white Gaussian host, the overall BER is
approximately 0.21. On the other hand, the analysis and
the experiments carried out for DFT-RDM with a colored
host and an equalizer attack provide a qualitative explanation
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Figure 11: Analytical WNR versus DFT channel for different order AR filters.

of the experimental results reported in [5] for DFT-RDM
applied to audio signals.

Some experiments were conducted to verify the effective-
ness of the extension of DFT-RDM proposed in Section 5,
hereinafter denoted by the subscript W-DFT-RDM; in the
following, the host will be assumed to be colored by 1/Aav(z),
whereas perfect whitening is assumed, that is, Aw(z) =
Aav(z).

First of all, we have compared the performance of W-
DFT-RDM with that of DFT-RDM applied to both white and
colored hosts. The experimental BERs measured for different
attack filters are presented in Figures 17, 18 and 19, where it
is verified that the BER of DFT-RDM applied to a white host

matches always that of W-DFT-RDM applied to a colored
host, as it was expected.

In Figure 17 are shown the experimental BERs measured
for the lowpass attack filter with cut-off frequency ωc = 0.8π
rad. It can be noticed that for the given attack filter, the
overall error probability of DFT-RDM applied directly to the
colored host is Pe ≈ 0.12, which is less than the overall error
probability of DFT-RDM for a white host (Pe ≈ 0.134). This
behavior can be easily explained by the fact that the per-
channel watermark signal power is larger at low-frequency
channels which are not modified at all by the attack filter.
This result confirms the conclusion that whitening does not
always assure the best BER for every attack filter.
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Figure 12: WNR versus DFT channel for colored host and lowpass
filter with passband [0, 0.4π] rad and stopband [0.8π,π) rad.

10−4

10−3

10−2

10−1

100

P
e

100 150 200 250

DFT channel

Analytical
Upper bound
Experimental

Figure 13: Ber versus DFT channel for colored host and lowpass
filter with passband [0, 0.4π] rad and stopband [0.8π,π) rad.

Then we have tested the watermarking methods with the
lowpass filter having passband [0, 0.4π] rad and stopband
[0.8π,π) rad, with a smooth transition in the middle. The
experimental BERs are shown in Figure 18. In this case, the
error probability of W-DFT-RDM is approximately 0.5 only
in the stopband, while for DFT-RDM applied to a colored
host it is 0.5 in the transition band too. This yields the overall
error probability of DFT-RDM (Pe ≈ 0.26), which is larger
than that of W-DFT-RDM (Pe ≈ 0.21).

In Figure 19 are shown the BERs for the ten-band
graphic audio equalizer. With this attack filter, since the
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Figure 14: Magnitude of the ten-band audio equalizer used in the
experiments.
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Figure 15: WNR versus DFT channel for colored host and ten-band
equalizer attack.

filtering effect is spread over all frequencies, W-DFT-RDM
outperforms DFT-RDM for colored hosts (the overall error
probabilities are respectively Pe ≈ 0.21 and Pe ≈ 0.48).

We have also compared the behavior of W-DFT-RDM
and of DFT-RDM using real audio tracks sampled at
44.1 kHz with 16 bits as host signal. These experiments
have been conducted using for all the audio tracks a
fixed whitening filter, which is again Aw(z) = Aav(z). We
remark here that perfect whitening does not occur with
audio tracks since the whitening filter Aw(z) is the inverse
of an AR filter which resembles the spectral contents of
a generic audio signal. The measured DWRs have been
obtained fixing the target DWR at 25 dB; we remark here
that with nonstationary, non-Gaussian and nonwhite hosts
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Figure 16: BER versus DFT channel for colored host and ten-band
equalizer attack.
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Figure 17: BERs versus discrete frequency for lowpass filter with
ωc = 0.8π rad.

the analytical derivation of the DWR for DFT-RDM is only
an approximation.

In Tables 1, 2, and 3 the overall error probabilities
evaluated for a spreading factor M = 1 (i.e., no spreading)
and a rectangular window are given. Notice that in all the
experiments, for the same audio track, the DWRs pro-
duced by the two embedding techniques are approximately
equal.

Table 1 shows the experimental results for the lowpass
filter with cut-off frequency ωc = 0.8π rad. As it was to
be expected from the results presented before for a colored
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Figure 18: BERs versus discrete frequency for lowpass filter with
passband [0, 0.4π] rad and stopband [0.8π,π) rad.
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Figure 19: BERs versus discrete frequency for the ten-band
equalizer attack.

host, for audio signals DFT-RDM has also lower bit error
probabilities than W-DFT-RDM. Similar results have been
obtained attacking the watermarked host with the lowpass
filter having passband [0, 0.4π] rad and stopband [0.8π,π)
rad. As it is shown in Table 2, the overall error probabilities
for DFT-RDM are mostly lower than the respective ones
for W-DFT-RDM; however, the behavior depends on the
particular audio track, as it can be noticed from the results
obtained for the tracks “Spff” and “Spfg.” In contrast, for the
ten-band equalizer attack, W-DFT-RDM yields an improved
overall BER for all the audio tracks.
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Table 1: Overall error probabilities for the lowpass filter with ωc = 0.8π rad (M = 1 and rectangular window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 24.82 0.110 24.72 0.131

Jarre 25.01 0.125 24.98 0.185

REM 24.96 0.102 24.75 0.129

Sopr 24.97 0.116 24.79 0.131

Spff 24.81 0.108 24.97 0.114

Spfg 24.66 0.106 24.53 0.115

Trpt 25.05 0.100 24.79 0.114

Vioo 25.23 0.105 25.23 0.162

Table 2: Overall error probabilities for the lowpass filter with passband [0, 0.4π] rad and stopband [0.8π,π) rad (M = 1 and rectangular
window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 24.82 0.237 24.74 0.249

Jarre 24.97 0.274 24.96 0.299

REM 24.96 0.219 24.73 0.263

Sopr 24.98 0.235 24.79 0.264

Spff 24.79 0.247 24.94 0.179

Spfg 24.64 0.237 24.52 0.172

Trpt 25.03 0.177 24.76 0.264

Vioo 25.24 0.246 25.22 0.283

We must remark that the BERs given above for both DFT-
RDM-based schemes would be unacceptable in a watermark-
ing application, thus the experiments have been repeated
using a spreading factor M = 8 and the optimal window,
which has been computed according to [5]. We remind that
spreading grants a robustness improvement at the expense of
a reduction of the data rate, which becomes 1/16 bits/sample
for M = 8. From the inspection of the DWRs listed in Tables
4, 5, and 6 it can be noticed that in all the experiments, for the
same audio track, the DWRs produced by the two embedding
techniques are approximately equal.

Table 4 shows the results for the lowpass filter with cut-
off frequency ωc = 0.8π rad. Here, for every audio track,
both DFT-RDM-based schemes reach the minimum error
probability, which corresponds to the correct detection of all
those watermark bits embedded in DFT channels within the
passband and is approximately 0.1.

From the comparison of the results for the lowpass
attacking filter with passband [0, 0.4π] rad and stopband
[0.8π,π) rad, that are listed in Table 5, we can notice that
whitening yields a minimum error probability, that is again
approximately 0.1, in almost all the experiments. Moreover,
DFT-RDM has always an overall error probability higher
than W-DFT-RDM and away from the minimum error
probability.

The overall error probabilities presented in Table 6 con-
firm the better behavior of W-DFT-RDM for the equalizer
attack. In fact, for every audio track the BER of W-DFT-
RDM is always lower, with an improvement with respect to

DFT-RDM that goes from a factor of 1.5 to 7 in terms of error
probability, depending on the audio track.

Even though linear filtering does not encompass MPEG
Layer-3 (MP3) compression, this can be very roughly seen
as a lowpass filtering with cut-off frequency equal to the
sampling frequency of the audio track after MP3 compres-
sion. Hence, we have conducted several experiments to verify
the robustness of DFT-RDM-based techniques to MP3 com-
pression. The real audio tracks, whose sampling frequency is
44.1 kHz, have been marked, compressed using LAME 3.97
[8] to perform MP3 encoding, and, finally, the watermark
has been retrieved. In Table 7 are listed the BERs measured
for both DFT-RDM-based techniques using a spreading
factor M = 8 and the optimal window. These results
have been obtained for constant bit-rate MP3 encoding of
the watermarked audio tracks, but approximately the same
error probabilities have been measured for average bit-rate
MP3 encoding. It is worth noting that in these experiments
the minimum error probability is approximately 0.137, that
corresponds to the correct detection of all the watermark
samples embedded up to 32 kHz, which is the sampling
frequency of the audio tracks compressed by LAME for the
considered bit-rates. From the inspection of the results in
Table 7, it can be noticed that the error probabilities of W-
DFT-RDM are always lower than those of DFT-RDM for the
same bit-rate. Even if the measured error probabilities are
considerably dependent on the particular audio track, W-
DFT-RDM approaches the minimum error probability for
almost all audio tracks and an encoding bit-rate equal to
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Table 3: Overall error probabilities for the ten-band equalizer attack (M = 1 and rectangular window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 24.81 0.463 24.70 0.359

Jarre 24.99 0.471 24.98 0.308

REM 24.95 0.481 24.76 0.392

Sopr 24.96 0.457 24.78 0.344

Spff 24.79 0.370 24.93 0.166

Spfg 24.69 0.364 24.55 0.149

Trpt 25.01 0.488 24.74 0.481

Vioo 25.21 0.493 25.19 0.360

Table 4: Overall error probabilities for the lowpass filter with ωc = 0.8π rad (M = 8 and optimal window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 22.96 0.112 22.93 0.100

Jarre 22.99 0.100 23.11 0.101

REM 26.60 0.100 26.33 0.102

Sopr 23.78 0.110 23.74 0.100

Spff 23.33 0.101 23.45 0.099

Spfg 25.37 0.100 25.25 0.100

Trpt 31.01 0.101 30.73 0.101

Vioo 25.29 0.101 25.27 0.099

Table 5: Overall error probabilities for the lowpass filter with passband [0, 0.4π] rad and stopband [0.8π,π) rad (M = 8 and optimal
window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 22.95 0.235 22.94 0.113

Jarre 22.98 0.139 23.10 0.101

REM 26.60 0.176 26.30 0.102

Sopr 23.82 0.241 23.76 0.101

Spff 23.36 0.148 23.45 0.100

Spfg 25.36 0.141 25.26 0.100

Trpt 31.05 0.247 30.74 0.158

Vioo 25.25 0.213 25.30 0.109

Table 6: Overall error probabilities for the ten-band equalizer attack (M = 8 and optimal window).

Track DFT-RDM W-DFT-RDM

DWR (dB) BER DWR (dB) BER

Bass 22.96 0.229 22.90 0.0325

Jarre 23.00 0.0380 23.14 0.0180

REM 26.61 0.0688 26.33 0.0130

Sopr 23.79 0.248 23.71 0.0383

Spff 23.34 0.0580 23.44 0.0115

Spfg 25.36 0.0542 25.27 0.0349

Trpt 31.02 0.3514 30.75 0.0512

Vioo 25.33 0.186 25.29 0.0282
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Table 7: Overall error probabilities for MP3 compression attacks (M = 8 and optimal window).

Track DFT-RDM W-DFT-RDM

DWR (dB) 80 kbps 160 kbps 320 kbps DWR (dB) 80 kbps 160 kbps 320 kbps

Bass 22.96 0.389 0.346 0.322 22.90 0.339 0.232 0.145

Jarre 23.00 0.409 0.229 0.155 23.14 0.402 0.213 0.140

REM 26.61 0.405 0.258 0.223 26.33 0.360 0.187 0.143

Sopr 23.79 0.399 0.354 0.337 23.71 0.345 0.220 0.146

Spff 23.34 0.292 0.185 0.148 23.44 0.280 0.175 0.138

Spfg 25.36 0.252 0.172 0.144 25.27 0.246 0.167 0.138

Trpt 31.02 0.402 0.371 0.366 30.75 0.389 0.346 0.328

Vioo 25.33 0.389 0.319 0.290 25.29 0.363 0.257 0.167

320 kbps. On the other hand, the BERs measured for DFT-
RDM can be far away from the minimum error probability
even if the audio tracks are encoded at the maximum allowed
bit-rate.

7. Conclusions

A thorough analysis of the behavior of DFT-RDM for
colored Gaussian hosts has been performed. An explanation
to the performance loss with respect to white Gaussian
hosts has been given. We have also provided an extension
of DFT-RDM for colored hosts without any additional
knowledge on the attack filter; this extension consists in
using a fixed whitening filter that captures the average
properties of audio signals. The analysis has been validated
by experimental results which confirm the performance
improvement afforded by the proposed solution. Moreover
W-DFT-RDM has been tested with audio signals providing
a BER decrease which encourages us to continue on this
research line. W-DFT-RDM for audio tracks is not able
to fill the performance gap with respect to DFT-RDM
for white hosts since a fixed (and nonperfectly matched)
average whitening filter is used at both the embedder and
the decoder. A further improvement could be obtained by
using a host-adaptive whitening filter at the embedder which,
assuming a blind framework, should be retrieved at the
decoder side, at least with some approximation. Finally, even
though encouraging BER results have been obtained for
MP3 compression, an accurate analysis of DFT-RDM-based
techniques against compression is needed in order to assess
the real bounds.
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