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Abstract

In this paper, we propose two different solutions for making a recently proposed asymmetric fingerprinting protocol
based on client-side embedding robust to collusion attacks. The first solution is based on projecting a client-owned
random fingerprint, securely obtained through existing cryptographic protocols, using for each client a different
randommatrix generated by the server. The second solution consists in assigning to each client a Tardos code, which
can be done using existing asymmetric protocols, and modulating such codes using a specially designed random
matrix. Suitable accusation strategies are proposed for both solutions, and their performance under the averaging
attack followed by the addition of Gaussian noise is analytically derived. Experimental results show that the analytical
model accurately predicts the performance of a realistic system. Moreover, the results also show that the solution
based on independent random projections outperforms the solution based on Tardos codes, for different choices of
parameters and under different attack models.
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Introduction
The wide availability of platforms for the distribution of
multimedia contents poses several problems regarding
copyright protection. A possible solution to prevent copy-
right violations is to embed a unique code, or fingerprint,
in the distributed copies, so that illegally redistributed
copies could be traced back to the entity responsible
for the violation. In the literature, several watermarking
techniques have been proposed with the aim of embed-
ding a unique fingerprint in a multimedia content [1, 2].
However, for the practical deployment of such systems, a
number of problems have to be solved.
First, the actual fingerprint can not be embedded by the

distributor alone, since a guilty customer could claim to
have been framed by a malicious distributor, undermining
the credibility of the whole system. Hence, fingerprint-
ing must be either handled by a trusted third party,
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or performed interactively via secure cryptographic pro-
tocols [3–6]. Second, if individual fingerprinted copies
for each customer are generated at the server side,
the amount of computational and bandwidth resources
needed by the server may soon become prohibitively high
in large-scale systems. A solution to this issue is offered
by client-side embedding methods, in which the server
distributes the same encrypted copy of the content to
all the clients, along with different client-specific decryp-
tion keys allowing each user to decrypt a slightly different
version of the content, bearing a different watermark
[7–10]. An alternative solution consists in creating a few
streams, each with different but constant watermarks, and
force the client to switch between the streams [11].
Besides these first two issues, a practical system has also

to cope with malicious customers trying to attack the sys-
tem. In this sense, a very effective attack is the so called
collusion attack. In this attack, a coalition of customers
combine their differently watermarked copies in order
to obtain a new copy in which the watermark is much
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harder to be detected. As to multimedia fingerprinting,
several studies have analyzed the robustness of water-
marking techniques to collusion attacks [12, 13], the
effectiveness of different detectors [14], and the robust-
ness to different collusion strategies [15]. An alternative
solution is to construct specific anticollusion codes that
can be embedded in a content [16]. Asymptotically opti-
mal probabilistic anticollusion codes were first proposed
by Tardos in [17], and later optimized under several
aspects [18–31].
The current literature on fingerprinting usually addres-

ses only a single issue at a time. There are few solutions
that try to simultaneously solve the above issues. In [32],
we proposed an asymmetric fingerprint protocol based
on a client-side distribution paradigm. The above solu-
tion effectively solves both customer’s rights and scal-
ability problems: nevertheless, collusion resistance was
not addressed in this proposal. Recently, a few works
have investigated the use of anticollusion codes in asym-
metric fingerprinting protocol. In [33], the authors pro-
pose an asymmetric Tardos code construction based on
oblivious transfer. In [34], the author proposes an asym-
metric binary fingerprinting code based on Boneh-Shaw
codes. However, both solutions are based on a server-side
distribution framework. Some authors also investigated
the use of Tardos codes in a client-side distribution
framework [35], but without addressing asymmetric
protocols.
In this paper, we propose two strategies for provid-

ing collusion resistance in the protocol of [32]. The
first strategy is based on generating independent cod-
ing matrices for the fingerprint of different users, and
is conceptually similar to using near orthogonal inde-
pendent Gaussian fingerprints. The second strategy con-
sists in generating the fingerprint of each user according
to a Tardos code, exploiting the fact that such codes
can be securely distributed using the protocol proposed
in [33]. Since Tardos codes are much longer than the
random fingerprints used in [32], an efficient encoding
obtained through a random partially circulant matrix is
proposed, which is conceptually similar to dimensionality
reduction techniques based on the Johnson-Lindenstrauss
lemma [36] and applied in compressed sensing [37]. For
both solutions, we develop the corresponding accusation
strategies and we analytically derive their anticollusion
performance under the averaging attack. Experimental
results are finally presented to support the proposed
analysis.

Background
In this section, we briefly review the client-side embed-
ding technique proposed in [38] and the asymmetric
fingerprinting protocol proposed in [32], which builds on
the above technique.

LUT-based client-side embedding
The client-side embedding proposed by Celik et al. in
[8, 38] is based on a long-term master encryption look-up
table E of size T and a set of watermarking LUTs Wk of
the same size, k = 0, . . . ,NU − 1, each associated to one
of theNU clients. The entries of E are usually i.i.d. random
variables following a Gaussian distribution with variance
σ 2
E , while the entries of each Wk are i.i.d. random vari-

ables following a Gaussian distribution with variance σ 2
W .

Different LUTs are assumed to be independent. For the
kth client, the distribution server generates a personalized
decryption LUT Dk by combining componentwise the
master encryption LUT E and a watermark LUTWk as

Dk(t) = −E(t) + Wk(t) (1)

for t = 0, 1, . . . ,T − 1. The personalized decryption LUTs
are then transmitted once to each client over a secure
channel. Note that the generation of the LUTs is carried
out just once at the setup phase.
For the secure distribution of a content, a set of M × R

values tih in the range [ 0,T−1], where 0 ≤ i ≤ M−1, 0 ≤
h ≤ R − 1, is pseudo-randomly generated according to a
content dependent key sek. Each of theM content features
xi is encrypted by adding R entries of the encryption LUT
identified by the indexes (ti0, . . . , ti(R−1)), obtaining the
encrypted feature ci as follows

ci = xi +
R−1∑
h=0

E(tih). (2)

Joint decryption and watermarking is performed by
generating the same sequence of indexes tih according to
the content dependent key sek and by adding R entries of
the decryption LUT Dk to each encrypted feature ci as

yk,i = ci+
R−1∑
h=0

Dk(tih) = xi+
R−1∑
h=0

Wk(tih) = xi+wk,i (3)

where the ith watermark component is given as the sum
of R entries of the LUTWk . The result of this operation is
the watermarked content yk = x + wk identifying the kth
user.

Asymmetric fingerprinting
A typical asymmetric fingerprinting protocol [3] is com-
posed of a registration phase, in which the client proves
his/her identity and commits to a secret that only he/she
knows, and a watermarking protocol, jointly performed by
the client and the distribution server, after which only the
client receives a copy of the watermarked content contain-
ing his/her secret. If the copy is illegally distributed, the
server can identify the guilty client by extracting his/her
secret from the watermark and prove to a Judge that it
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is indeed the client’s secret by using a proper dispute
resolution protocol based on the client’s commitment.
Let us assume that each client has a public/private

key pair (puk, prk). The schemes proposed in [5, 6]
assume that the kth client produces as input to the water-
marking protocol a random string of L bits denoted as
bk , representing his/her secret. This L-bit fingerprint is
encrypted with the client’s public key using an addi-
tively homomorphic cryptosystem and sent to the server,
together with a proper commitment linking the identity
of the client to the encrypted fingerprint. Thanks to the
homomorphic properties of the encryption, the server is
able to compute a watermarked copy of the content con-
taining the client’s fingerprint directly in the encrypted
domain, so that the client’s secret is never disclosed. How-
ever, if after an illegal redistribution a watermarked copy
is found in the clear, the client’s secret can be obtained
through the watermark decoder and used in an accusation
protocol.
In order to use an asymmetric fingerprinting protocol

within a client-side distribution framework, the authors
of [32] propose to use the above protocol to securely
embed the client’s secret in the encryption LUT and
to employ the resulting modified LUT as the client’s
decryption LUT. Namely, the fingerprint of the kth client
is first randomized by the server using a secret L-bit
sequence rk . Then, the resulting string is encoded using
a binary antipodal modulation, yielding the to be trans-
mitted messagemk . Formally, each symbol of the message
is computed as mk,l = σW (2(bk,l ⊕ rk,l) − 1), 0 ≤
l ≤ L − 1. Then, the message mk is projected accord-
ing to a T × L random matrix G, yielding the following
watermarking LUT

Wk = Gmk (4)

The personalized decryption LUT Dk is finally obtained
by combining the encryption LUT and the above water-
marking LUT as

Dk = −E + Gmk . (5)

Since all the above operations are linear, the encryption
of Dk can be directly computed in the encrypted domain
using the encryption of bk , obtained through an additively
homomorphic cryptosystem, and properly rescaled and
quantized versions of E and G [32]. A high-level block
diagram of the above protocol is shown in Fig. 1.
The watermarked content obtained after the decryp-

tion with the above Dk can be expressed by adding to
the encrypted signal the product of the decryption LUT
D and a proper binary matrix T defined according to the
sequence of indexes tih, i.e.,

y = c + TDk = x + TWk (6)

where T is aM × T binary matrix defined as

T(i, j) =
{
1 j = tih, h = 0, . . . ,R − 1
0 otherwise. (7)

If we assume that the watermark decoder receives a copy
of the watermarked signal corrupted by an additive noise,
the received signal can be expressed as a function of the
client’s modulated fingerprint as

y′ = y + n = x + TGmk + n = x + G̃mk + n (8)

that is, the actual watermark is equal to the message mk
projected by theM × L random matrix G̃ = TG.
Since the scheme is asymmetric, the decoder does not

know the messages mk and a correlation detector, as that
proposed in [8], is not applicable here. Hence, the authors
in [32] propose to obtain an estimated fingerprint b̂k
and to verify whether it matches with a recorded client,
using the accusation protocols provided by the underlying
asymmetric fingerprinting protocol.
When the original signal x is available at the decoder,

which is a common hypothesis in fingerprint applications,
a simple decoder can be obtained using theMatched Filter
(MF) principle as

b̂k = sgn
{
G̃

T (y′ − x)
}

(9)

where sgn {} denotes the sign function.

Anticollusion solutions
As pointed out in [32], the basic protocol described in
the previous section is potentially vulnerable to collu-
sion attacks, where several clients combine their received
watermarked copies in order to obtain a pirated copy in
which their fingerprints are much harder to be detected.
In the following, we introduce two possible solutions to
cope with this problem. The first solution is based on
the use of random fingerprints modulated by a differ-
ent projection matrix for each client. The second solution
consists in generating each client’s fingerprint according
to a Tardos anticollusion code.

Collusion model
We assume that a server distributes NU differently water-
marked copies of the same content x toNU clients. Among
those clients, a coalition C of C = |C| clients cooperates
in order to obtain a pirated copy yC according to some,
possibly randomized, collusion strategy. In the following,
we assume that the C colluders adopt an average collusion
strategy, i.e., the pirated copy is obtained as

yC = 1
C
∑
c∈C

yc + n (10)

where yk denotes the watermarked copy of the kth
client and n is additive Gaussian noise with zero mean,
independent of the watermarked copies. In multimedia
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Fig. 1 Block diagram of asymmetric fingerprinting based on client side embedding

fingerprinting, for a given bound on the distortion of yC
with respect to the watermarked copies, such a strategy is
the most efficient from the attacker’s point of view [14].
In the client-side setting, a coalition of attackers has the
option of directly combining the respective LUTs, instead
of the content. As to the averaging attack, in the absence
of noise, the two strategies are equivalent. In the pres-
ence of noise, attacking the LUT may achieve a lower
distortion of the content for the same variance of the
additive noise.
Given a suspect content yC , we assume that a detector

produces an accusation setA and accuses the kth client if
k ∈ A. The performance of the detector is measured by
the probability of accusing at least one colluder, referred to
as probability of detection, and by the probability of accus-
ing an innocent user, referred to as probability of false
alarm. Formally, the probability of detection is given by

Pd = Pr{A ∩ C �= ∅} (11)

whereas the probability of false alarm is given by

Pfa = Pr
{
A ∩ C �= ∅

}
. (12)

If we assume that the probability of accusing a specific
innocent client is ε, from the union bound we have that
Pfa ≤ (NU − C)ε < NUε. A fingerprinting system is said
to be secure against a coalition of C colluders for a proba-
bility of false alarm η if the corresponding probabilities of
detection and false alarm satisfy Pd ≈ 1 and Pfa ≤ η. In
practice, Pd ≥ 0.9 is usually sufficient to deter collusion.

Random LUTs
Since the early days of watermarking, it was argued that
additive Gaussian distributed watermarks may provide a
certain level of resistance to colluders [12]. In [13], it was
shown that a system with NU users employing Gaussian
watermarks of length M, i.e., where the fingerprints are
represented by vectors of M i.i.d. zero-mean Gaussian
variables, is secure against a coalition of C colluders,
where C = O

(√
M/ logNU

)
, which is similar to the

asymptotic behavior of Tardos codes [17]. If we assume
that the random projection matrix G is composed of
i.i.d. Gaussian variables, then the watermarking technique
described by Eqs. (5) and (6) is equivalent to adding to
the content L almost independent Gaussian watermarks
of length M, each modulated by a fingerprint bit. Hence,
by assigning to different clients different and independent
projection matrices, we expect that the system will bene-
fit from the inherent anticollusion properties of Gaussian
watermarks.
In the proposed solution, we assume that each client is

identified by a random L-bit fingerprint, where each bit is
independently drawn with probability 0.5. The fingerprint
of the kth client is then randomized using a server gener-
ated bit sequence rk and encoded using binary antipodal
modulation in a L-symbol vector mk and the server dis-
tributes to each client a personalized decryption LUT
obtained as

Dk = −E + Gkmk . (13)

where Gk is the random projection matrix associated to
the kth client. When the server receives a suspect copy yC ,
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an estimate of the fingerprint is computed for each client
according to

b̂k = sgn
{
G̃

T
k (yC − x)

}
⊕ rk (14)

where G̃k = TGk and compared with the recorded
fingerprint of the corresponding kth client. Namely, for
each client the detector computes the Hamming dis-
tance between the estimated and the recorded fingerprint,
producing the accusation score

Zk =
L−1∑
l=0

(
b̂k,l ⊕ bk,l

)
(15)

and declares as guilty the clients belonging to the follow-
ing set

A = {k|Zk < θR} . (16)

The threshold θR must be set in order to satisfy a suitable
bound on the probability of accusing innocent clients. In
order to guarantee Pfa ≤ η, a conservative choice is to
impose Pr{Zk < θR} ≤ η/NU for each k /∈ C. When
k /∈ C, we have that G̃k and yC are independent, and
the bits b̂k,l can be modeled as Bernoulli variables with
probability 0.5 independent of the fingerprint bits bk,l. As
a consequence, the accusation score of an innocent user is
distributed according to a binomial distribution B(L, 0.5)
and the probability Pr{Zk < θR|k /∈ C} can be upper
bounded using Hoeffding’s inequality as

Pr {Zk < θR|k /∈ C} ≤ exp
(

−2(L/2 − θR)2

L

)
(17)

from which we derive the threshold as

θR = L
2

−
√
L log(NU/η)

2
. (18)

For large L, a less conservative threshold can be obtained
by approximating Zk as a Gaussian distributed variable
with mean L/2 and variance L/4, which results in the
threshold

θR = L
2

+
√
L
2

�−1(η/NU) (19)

where �−1 denotes the inverse cumulative distribution
function of a standard normal variable.

Tardos codes
An alternative solution for providing resistance to
collusion in the protocol described in the previous section
is to construct the clients’ fingerprints bk according to
some anticollusion code. Tardos in [17] proposed a prob-
abilistic code construction which is asymptotically opti-
mal under the restricted digit model, i.e., under the
assumption that the attackers can only use one of the sym-
bols that they have received at each position to produce

the colluded copy. The construction of the code is as fol-
lows. Given a fingerprint length L and a maximum coali-
tion size C, the server generates the random numbers pl ∈
[ δ, 1−δ], l = 0, . . . , L−1 according to the probability den-
sity function f (p) =

((
π − 4 arcsin

√
δ
)√

p(1 − p)
)−1

,
where the parameter δ satisfies δC � 1 (Tardos suggests
δ = 1/(300C)). Then, for each client, the fingerprint
bits bk,l, k = 0, . . . ,NU − 1, are randomly generated as
Bernoulli random variables with Pr{bk,l = 1} = pl.
In the proposed scheme, we assume that Tardos codes

can be securely distributed according to an asymmet-
ric protocol and embedded at the Server’s side using a
homomorphic cryptosystem, for example using the solu-
tions proposed in [33]. Following the approach in [32], we
assume that a similar technique can be used for securely
embedding a Tardos code in a LUT. However, a strategy
allowing to embed a sufficiently long Tardos code in a
watermarking LUT, and next to detect a possibly pirated
codeword usable as input to the accusation protocol, has
to be designed.
In [19, 30], the authors show that the optimal length

of a Tardos code that is secure against a coalition of C
colluders, when using the symmetric accusation score, is
L ≈ 1

2π
2C2 log(NU/η), which means that practical code

lengths are of the order of L ≈ 106. As a consequence, the
computation of the watermarking LUT in (5) may require
a very large projection matrixG. Moreover, in some cases,
we may have L > M, which implies that a zero forc-
ing detection approach as that proposed in [32] is not
possible, since G̃T

G̃ becomes a singular matrix.
In order to manage large values of L, we propose thus to

generateG according to a partial random circulantmatrix.
A random circulant matrix is based on a random vector
that is circularly shifted to generate every row. Moreover,
circulant matrices can be diagonalized using a discrete
Fourier transform (DFT) as

G = W
H
DW (20)

where W is the unitary DFT matrix and D is a diagonal
matrix whose nonzero elements are the DFT of the first
column of G. The above property means that the water-
marking LUT can be efficiently computed by relying on a
fast Fourier transform. For L > M, the watermarking LUT
can be computed as

Wk = PW
H
DWmk (21)

where the M × L matrix P selects the first M entries of a
vector of length L, whereas for L ≤ M the watermarking
LUT can be computed as

Wk = W
H
DWP

Tmk (22)

where the M × L matrix P
T pads a L-length vector with

M − L zeros. We note that the above expressions can
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be also implemented with an encrypted version of mk by
using an encrypted domain FFT algorithm like the one
proposed in [39].
As to the detection of the fingerprint, the matched filter

detector in (9) can be computed on a suspect copy yC as

b̂ = sgn
{
W

H
D
H
WP

T
T
T (yC − x)

}
(23)

for L > M, or as

b̂ = sgn
{
PW

H
D
H
WT

T (yC − x)
}

(24)

for L < M. In the above expression, we note that comput-
ing the matrix product TT (yC − x) is actually equivalent
to constructing a suspect LUT from the sequence of
watermark estimates as explained in [8, Sec. IV.B] and
does not require an actual matrix multiplication. Once
we have an estimate of the suspect fingerprint, different
strategies exist in order to detect possible colluders.
The first solution we employ in this paper is the sym-

metric version of the accusation sums proposed in [19].
Namely, for each client the detector computes the follow-
ing score

Zk =
L−1∑
l=0

(
2b̂l − 1

)
gbk,l (pl) (25)

where the weights are defined as g1(pl) = √
(1 − pl)/pl

and g0(pl) = −1/g1(pl), and declares as guilty the clients
belonging to the following set

A = {k|Zk > θT } . (26)

In [19], it is shown that in order to guarantee Pfa ≤ η the
threshold must be chosen as

θT = 2
√
L
⌈
log(NU/η

⌉
. (27)

A less conservative threshold can be also obtained by
using the central limit theorem. In this case, the accu-
sation sum for innocent clients can be approximated as
a Gaussian variable with zero mean and variance L [19],
which results in the threshold

θT = √
L�−1(1 − η/NU). (28)

The second solution is a detector optimized for the
asymptotic worst-case attack on Tardos codes, which is
the so-called interleaving attack [40]. In order to model
the noise at the receiver, let us assume that each finger-
print bit is received through a binary symmetric channel
(BSC) with crossover probability pe. Using the results in
[29] for the combined digit model, the optimal score in the
case of the interleaving attack can be expressed as

Zk =
L−1∑
l=0

hbk,l ,b̂l (pl) (29)

where the optimal suspicion function h is defined as

h0,0(p) = p/(1 − p + γe) (30)
h0,1(p) = −p/(p + γe) (31)
h1,0(p) = −(1 − p)/(1 − p + γe) (32)
h1,1(p) = (1 − p)/(p + γe) (33)

with γe = pe/(1−2pe). The detector declares as guilty the
clients belonging to the set

A = {k|Zk > θT2} (34)

where θT2 should be computed taking into account the
distribution of the accusation sum for innocent clients. It
is easy to verify E[Zk|k /∈ C]= 0, whereas

Var[Zk|k /∈ C]

=L · Ep
[

p(1 − p)
(1 − p + γe)2

Pb̂l (0) + p(1 − p)
(p + γe)2

Pb̂l (1)
]

=σ 2
T2,I .

(35)

Hence, using a Gaussian approximation, the threshold
can be derived as

θT2 = σT2,I�
−1(1 − η/NU). (36)

Differently from the symmetric accusation score in (25),
the threshold for the optimized accusation score depends
on the number of colluders, their attack strategy, and the
noise level at the receiver. Since these quantities are usu-
ally unknown to the detector, a practical detector should
estimate σ 2

T2,I from the received fingerprint in order to
compute the right threshold.

Practical issues
In the secure implementation of the asymmetric finger-
printing protocol of [32], the server does not have the
plaintext values of the fingerprints bk provided by each
kth client. Hence, after decoding either the suspect finger-
print of each kth client with (14) or decoding the global
suspect fingerprint with (23) or (24), a secure protocol
must be invoked to compare such fingerprint estimates
with the actual fingerprints of each user.
As to the random LUT solution, the accusation set

defined in (16) can be securely computed by using secure
Hamming distance protocols, like those described in [41].
As to the Tardos solution, after the fingerprint bits are
demodulated using (9), the scores in (25) can be com-
puted by using the accusation procedure described in [33],
which requires a trusted Judge to be revealed both the
random bias values pl, which are a secret input of the
server, and the fingerprints bits bk,l, which are a secret
input of the kth client. In the first case, the compu-
tation of the accusation sets requires the execution of
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onerous cryptographic protocols, while in the second
case, a trusted third party is required.
However, when the number of active clients is very large,

e.g., millions of users, performing the secure computation
of the accusation sets may become prohibitively expen-
sive. A possible solution to this issue is to embed a server
specific watermark along with the client secret watermark
and using this first watermark to compute a set of
suspect clients, as suggested in [33]. Since this watermark
is known to the server, it can not be used in a dispute
resolution protocol as a proof that a given client is guilty.
However, once the server has a list of suspect clients,
the secure accusation protocols can be run only on this
reduced subset. Typically, the list of suspect clients will
only contain few tens of entries, so that the previously
described secure protocols become feasible.
In order to embed a server specific watermark in a

client-side distribution framework, the server can sim-
ply add to each personalized decryption LUT Dk a server
specific watermarking LUT SWk , i.e., the actual decryp-
tion LUT can be redefined as

Dk = −E + Wk + SWk . (37)

By using the above decryption LUT, each client will
embed along with his/her secret fingerprint a server-
specific spread spectrum watermark [8], which is known
to have good anticollusion properties. Moreover, the
above operation can be performed in the encrypted
domain by relying on a homomorphic cryptosystem,
hence the secure distribution of decryption LUTs is not
violated. A possible drawback is that the two water-
marks will interfere each other. However, this will likely
affect only the performance of the server specific water-
marks, since the watermarks of the suspect clients can
be subtracted from the content under investigation before
computing the final accusation sets.

Performance analysis
In this section, we will provide analytical expressions for
the probability of detection of the proposed anticollusion
schemes as a function of the number of colluders and the
probability of false alarm. The analysis is based on the
simplifying assumption that the final projection matrix
G̃ is made of i.i.d. Gaussian entries and relies heavily on
the central limit theorem, so it is valid only for large
M and L.

Random LUTs
From (10) and the definition of watermarking LUT in (13),
we can express the estimated watermark after an average
attack by C colluders as

w = yC − x = 1
C
∑
c∈C

G̃cmc (38)

Let us express the lth column of G̃c as φc,l. We have

w = 1
C
∑
c∈C

L−1∑
l=0

mc,lφc,l. (39)

According to the MF detector, the lth detected sym-
bol for the kth client is given by m̂k,l = φT

k,lw. Now, let
us assume that the vectors φc,l are mutually independent
and Gaussian distributed, and that they are normalized so
that the variance of each component is equal to 1/(ML).
By invoking the central limit theorem, we can model m̂k,l,
both when k ∈ C and k /∈ C, as a Gaussian distributed vari-
able. Moreover, it is easy to derive the following statistics

E[m̂k,l|k ∈ C]=mk,l · 1
CL

= mk,lμC (40)

Var[m̂k,l|k ∈ C]=CL + 1
C2L2M

+ σ 2
n
L

= σ 2
C (41)

where σ 2
n denotes the variance of the components of the

noise vector n. Hence, we can express the probability of
reading the wrong bit for a colluder as

pe = Pr
{
sgn{m̂k,l} �= bk,l

} = Q
(

μC
σC

)
(42)

where Q(x) = (2π)−1/2 ∫∞
x e−t2/2dt is the tail probability

of a standard normal variable. By assuming that differ-
ent fingerprint symbols are independent, the accusation
score in (16) can be modeled by a binomial B(L, pe) dis-
tribution. Using the Gaussian approximation of the bino-
mial distribution, the probability of detecting a specific
colluder for a threshold θR can be expressed as

Pd,single = 1 − Q
(

θR − Lpe√
Lpe(1 − pe)

)
(43)

and, assuming independence for different colluders, the
probability of detecting at least a colluder is estimated as

Pd = 1 − (1 − Pd,single)C . (44)

Tardos codes
In [18], it was shown that the performance of Tardos
codes with the accusation scores as in (25) can be ana-
lyzed using a Gaussian approximation. Let us define
μT = E[Zk|k ∈ C] and σ 2

T = Var[Zk |k ∈ C],
denoting the mean and the variance of the accusation
score for a generic colluder, respectively. The probability
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of detecting a specific colluder for a threshold θT can be
expressed as

Pd,single = 1 − Q
(

μT − θT
σT

)
(45)

whereas, assuming independence for different colluders,
the probability of detecting at least a colluder can be
estimated as in (44).
For the accusation score in (25), the expectation of Zk ,

computed over p, b̂, bk , can be expressed as

μT =
L−1∑
l=0

Epl
[
Eb̂l ,bk,l

[
(2b̂l − 1)gbk,l(pl)

]]
. (46)

Since the bias terms pl are i.i.d., this can be simplified as
E[Zk]= L · Ep

[
Eb̂,bk

[
(2b̂ − 1)gbk (p)

]]
, where

Eb̂,bk
[
(2b̂ − 1)gbk (p)

]
=g1(p)Pb̂,bk (1, 1) + g0(p)Pb̂,bk (1, 0)

− g1(p)Pb̂,bk (0, 1) − g0(p)Pb̂,bk (0, 0)

=g1(p)p
[
Pb̂|bk (1|1) − Pb̂|bk (0|1)

]
+ g0(p)(1 − p)

[
Pb̂|bk (1|0) − Pb̂|bk (0|0)

]
=g1(p)p

[
2Pb̂|bk (1|1) − 1

]
− g0(p)(1 − p)

[
2Pb̂|bk (0|0) − 1

]
=2
√
p(1 − p)

[
Pb̂|bk (1|1) + Pb̂|bk (0|0) − 1

]
.

(47)

The variance of Zk can be similarly expressed as

σ 2
T =E

⎡
⎣(L−1∑

l=0
(2b̂l − 1)gbk,l(pl)

)2⎤⎦− E[Zk]2

=
L−1∑
l=0

E
[
(2b̂l − 1)2g2bk,l (pl)

]

+
L−1∑
l=0

L−1∑
l′=0,l′ �=l

E
[
(2b̂l − 1)gbk,l(pl)

]

× E
[(

2b̂l′ − 1
)
gbk,l′

(
p′
l
)]− E[Zk]2

=
L−1∑
l=0

E
[
g2bk,l (pl)

]
− E [Zk]2

=L − E[Zk]2

(48)

since we have E
[
g2bk,l (pl)

]
= plg21(pl)+ (1−pl)g20(pl) = 1.

For the accusation score in (29), the expectation of Zk

can be computed as μT = L · Ep
[
Eb̂,bk

[
hbk ,b̂(p)

]]
, where

Eb̂,bk
[
hbk ,b̂

]
=h1,1(p)Pb̂,bk (1, 1) + h1,0(p)Pb̂,bk (0, 1)

+ h0,1(p)Pb̂,bk (1, 0) + h0,0(p)Pb̂,bk (0, 0)

=p(1 − p)
[
Pb̂|bk (0|0)
1 − p + γe

−
1 − Pb̂|bk (0|0)

p + γe

+
Pb̂|bk (1|1)
p + γe

−
1 − Pb̂|bk (1|1)
1 − p + γe

]

=p(1 − p)
[

1 + 2γe
(1 − p + γe)(p + γe)

×
(
Pb̂|bk (1|1) + Pb̂|bk (0|0) − 1

)]
.

(49)

Similarly, the variance can be computed as σT = L ·
Ep
[
Eb̂,bk

[
h2
bk ,b̂

(p)
]]

− μ2
T .

In order to evaluate μT and σT for the different
accusation scores, the collusion channel Pb̂|bk (·|·) needs to
be characterized. In the proposed scheme, Tardos codes
are used over a noisy channel, and the randommodulation
of the code by G̃ is not perfectly orthogonal, resulting in
an additional interference over each code bit. The above
model can be analyzed considering a collusion attack in
the combined digit model [25]. According to the average
collusion model in (10), for each fingerprint position the
colluders output a symbol proportional to the number of
zeros and ones that they see in their copies. If we express
the lth column of G̃ as φl, then we have

w =
L−1∑
l=0

φl
1
C
∑
c∈C

mc,l (50)

and the lth symbol computed by the MF detector is given
by m̂l = φT

l w. If we assume that in the lth position the
colluders see tl ones, then for each l we have

E[m̂l]=2tl − C
C

· 1
L

(51)

Var[m̂l]=L + 1
L2M

+ σ 2
n
L
. (52)

After hard decoding, the probability of b̂l = 1 condi-
tional to observing tl ones can be expressed as

Pb̂l|tl (1|tl) =Pr{m̂l > 0}

=Q
(
2tl − C

C

√
M

L + 1 + MLσ 2
n

)
.

(53)
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It is easy to observe that Pb̂l|tl (1|tl) = 1 − Pb̂l|tl (1|C − tl).
Based on the above conditional probabilities, the proba-
bilities of b̂ conditional to bk can be expressed as

Pb̂|bk (1|1) =
C−1∑
t=0

(
C − 1

t

)
pt(1 − p)C−1−tPb̂|t(1|t + 1)

(54)

and

Pb̂|bk (0|0) =
C−1∑
t=0

(
C − 1

t

)
(1 − p)tpC−1−tPb̂|t(1|t + 1).

(55)

since the probability of b̂l = 0 conditional to observing tl
zeros is equal to the probability of b̂l = 1 conditional to
observing tl ones, due to the symmetry of the channel.
Using the above expressions, in the case of the accusa-

tion score in (25), we obtain

μT =2L
π

∫ 1

0

(
Pb̂|bk (1|1) + Pb̂|bk (0|0) − 1

)
dp

=2L
π

∫ 1

0

(
pC−1Pb̂|t(1|C)

− (1 − p)C−1
(
1 − Pb̂|t(1|C)

)

+
C−2∑
t=0

Pb̂|t(1|t + 1)
t + 1

(
C − 1

t

)

× ∂pt+1(1 − p)C−1−t

∂p

)
dp

= 2L
Cπ

(1 − 2pe)

(56)

where pe = 1 − Pb̂|t(1|C) denotes the probability of read-
ing the wrong bit when all colluders agree on the same
symbol and we have assumed δ = 0 in the definition of the
pdf of p. In the RDM, we have pe = 0. For the variance, we
obtain

σ 2
T = L

[
1 − 4

C2π2 (1 − 2pe)2
]
. (57)

In the case of the accusation score in (29), μT and σ 2
T can-

not be expressed in closed form and the expectation over
p has to be numerically evaluated.

Experimental results
For the experimental validation of the proposed solutions,
we have simulated a system performing client-side
embedding on digital images. A dataset of 20 grayscale
uncompressed 8 bit images, each having resolution 1024×
1024 pixels and representing different subjects, has been
used. For each image, a vector x of 216 components has

been obtained by applying a 8 × 8 discrete cosine trans-
form (DCT) to the image and taking 4 DCT coefficients
for each 8 × 8 block, corresponding to the coefficients
between the 7th and 10th positions according to the
zig-zag ordering used by JPEG standard.
Encryption has been obtained by adding the elements

of the encryption LUT E to the selected DCT coeffi-
cients and reconstructing the images through an inverse
block DCT. As in [32], pixel values have been mapped
to 9 bits using rounding and modulo 512 operations, so
as to avoid wrap around errors after watermarking. In all
experiments, the encryption LUT power has been set to
σ 2
E = 106, the LUT size has been set to T = 216, and R = 4

LUT entries are added together to encrypt each element.
The effect of a fixed point representation of both E and D
has been assumed negligible.
For each image, 100 independent tests were performed

by randomly generating different encryption LUTs, dif-
ferent fingerprints, and different projection matrices G.
In each test, we simulated joint decryption and water-
marking performed by C different clients, where C ranges
from 1 to 100, followed by the averaging attack described
in (10). In the attack, the variance of the noise has been
set so as to satisfy a prescribed watermark to noise
ratio (WNR), defined as WNR = 10 log10

Rσ 2
W

σ 2
N
. The

performance has been evaluated by measuring the detec-
tion rate (DR), defined as the number of tests in which
we accuse at least a guilty client over the total num-
ber of tests, for each different value of C. Ideally, DR
should tend to the theoretical probability of detection of
the system.

Random LUTs
For the random LUT solution, we set the fingerprint
length to L = 128 and we generated the entries of
the projection matrices as i.i.d. zero mean variables,
according to either a Gaussian or a Bernoulli distribu-
tion with values in 1,−1. Projection matrices have been
rescaled so that the power of the watermarking LUT
satisfies σ 2

W = 1. The threshold used by the detector
has been computed according to the Gaussian approxi-
mation in (19), assuming a maximum number of users
NU = 106 and different target values for the probability of
false alarm.
In Fig. 2, we show the anticollusion performance of

the system for a theoretical probability of false alarm
Pfa = 10−6 and Pfa = 10−9, assuming that the attack
satisfies WNR = 0 dB. The theoretical probability of
detection for each collusion set size C has been com-
puted according to (44) and (43) and compared to the
measured detection rate obtained using either Gaus-
sian or Bernoulli projection matrices. As can be seen,
Gaussian and Bernoulli matrices permit to obtain very
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Fig. 2 Performance of random LUT solution for different numbers of colluders at WNR = 0 dB. a Pfa = 10−6; b Pfa = 10−9

similar detection performances. Moreover, the anticollu-
sion performance of the system can be accurately pre-
dicted by using the provided theoretical expressions. For
the chosen parameters, i.e., M = 216 and L = 128,
and WNR = 0 dB, the proposed system is able to with-
stand a coalition of about 32 colluders at Pfa = 10−6 and
25 colluders at Pfa = 10−9. These results are similar to
the performance of random orthogonal fingerprinting for
similar parameters, as reported in [14].

Tardos codes
In the case of Tardos solutions, we similarly generated the
entries of the first column of the projection matrices as
i.i.d. zero mean variables, according to either a Gaussian
or a Bernoulli distribution with values in 1,−1. Projection
matrices have been rescaled so that the power of the
watermarking LUT satisfies σ 2

W = 1.
For the Tardos solution using the accusation score in

(25), simply referred to as Tardos, we set the fingerprint
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length to L = 220 and the threshold used by the detector
has been computed according to the Gaussian approxima-
tion in (28)
For the Tardos solution using the accusation score in

(29), referred to as Tardos with interleaving defence (ILD),
we set the fingerprint length to L = 215 and the threshold
has been computed according to the Gaussian approx-
imation in (36). The variance σT2,I has been numeri-
cally estimated by evaluating (35) through Monte Carlo

integration, using Pb̂l (1) =∑C
t=0
(C
t
)
pt(1 − p)C−tPb̂|t(1|t)

and Pb̂l (0) = 1 − Pb̂l (1).
In both cases, we assumed a maximum number of users

NU = 106 and different target values for the probability of
false alarm.
In Figs. 3 and 4, we show the anticollusion performance

of the Tardos and Tardos ILD solutions, respectively, for a
theoretical probability of false alarm Pfa = 10−6 and Pfa =
10−9, assuming that the attack satisfies WNR = 0 dB.

Fig. 3 Performance of Tardos solution, for different numbers of colluders at WNR = 0 dB. a Pfa = 10−6; b Pfa = 10−9
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Fig. 4 Performance of Tardos ILD solution, for different numbers of colluders at WNR = 0 dB. a Pfa = 10−6; b Pfa = 10−9

The theoretical probability of detection for each collusion
set size C has been computed according to (44) and (45)
and compared to the measured detection rate obtained
using either Gaussian or Bernoulli projection matrices.
Also in this case, Gaussian and Bernoulli matrices per-
mit to obtain very similar detection performances and the
anticollusion performance of the system can be accurately
predicted by using the provided theoretical expressions.

At WNR = 0 dB, the Tardos solution with M = 216 and
L = 220 is able to withstand a coalition of about 15 0 at
Pfa = 10−6 and 13 colluders at Pfa = 10−9, whereas the
Tardos ILD solution with M = 216 and L = 215 is able to
withstand a coalition of about 16 colluders at Pfa = 10−6

and 14 colluders at Pfa = 10−9. It is worth noting that
the results of the first solution are sensibly worse than
the expected performance of Tardos codes on a noiseless
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channel, which for L = 220 should be about 87 colluders
at Pfa = 10−6 and NU = 106 [19]. In this case, the per-
formance of the code is severely limited by the fact that
only M = 216 positions are available to embed the code,
which introduces a lot of interference among code bits.
The results of ILD solution are in line with the expected
performance of Tardos codes for L = 215, which is about
15 colluders at Pfa = 10−6 and NU = 106.

Comparisons
The results of the previous sections show that, for the
proposed choice of parameters, the random LUT solution
offers better collusion resistance with respect to the
embedding of Tardos codes. In this section, we compare
the performance of the different solutions for different
choices of parameters and under different WNRs of the
attack. The comparison is made using the theoretical
probability of detection obtained in the previous perfor-
mance analysis. In the case of the Tardos ILD solution, the
quantities μT and σ 2

T have been evaluated through Monte
Carlo integration over 105 independent realizations of p.
For each choice of parameters, we use as performance
metric the largest size of the coalition for which the
detector can guarantee Pd > 0.9.
In Fig. 5, we show a performance comparison between

random LUTs and Tardos codes for different values ofM.
The other parameters are set as in the previous sections,
namely WNR = 0 dB, L = 128 for random LUTs, L =
220 for Tardos codes. For Tardos codes ILD, we tested
both L = 215 and L = 220. As to random LUTs, the

size of the coalition against which a M-length watermark
is secure grows approximately as C = O(

√
M), which

is consistent with previous results on random Gaussian
fingerprints [13]. For Tardos codes, the behavior depends
on the relationship between M and L. For M < L, we
have the same behavior as random LUTs, even though the
size of the coalition against which the system is secure
is approximately halved. For M > L, the performance
depends on the length of the inner Tardos code and
is independent of M when M � L. It is worth not-
ing that the ILD solution performs sensibly better than
the baseline Tardos solution for the same length of the
inner code.
In Fig. 6, we show a performance comparison for dif-

ferent values of L, setting the other parameters as in the
previous section, namely M = 216 and WNR = 0 dB.
For random LUT and Tardos solutions, choosing a larger
L usually increases the anticollusion performance, even
though there is a performance threshold for large L. For
the Tardos ILD solution, there is an optimal L value, indi-
cating that this solution is much more affected by possible
interfence among code bits. For random LUTs, setting
L ≈ 103 is sufficient to guarantee the best performance,
whereas for Tardos codes, in order to achieve the best
attainable performance, L � M should be used. For the
ILD, the best solution seems to set L ≈ M.
Finally, in Fig. 7, we show a performance comparison

for different WNRs, setting the parameters as M = 216,
L = 128 for random LUTs, L = 220 and L = 215 for Tardos
codes, L = 215 for Tardos codes ILD. At low WNRs,

Fig. 5 Performance comparison for different values ofM. The other parameters are L = 128 for random LUTS, L = 220 for Tardos codes, and
WNR = 0 dB
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Fig. 6 Performance comparison for different values of L. The other parameters areM = 216, WNR = 0 dB

both systems show a similar behavior: themaximum coali-
tion size grows approximately as C = O(σW/σN ) and
we observe a fixed ratio (approximately equal to two)
between the maximum coalition size of random LUTs and
Tardos codes. For higher WNRs, the maximum coalition
size depends mainly on the other parameters, resulting in
a maximum coalition size limit which is independent of

theWNR. Interestingly, at highWNRs, random LUTs can
withstand a much larger coalition than Tardos codes.

Robustness to JPEG compression
The performance of the two anticollusion solutions in
the presence of JPEG compression has been verified
experimentally, by using the same parameters as in the

Fig. 7 Performance comparison for different values of WNR. The other parameters areM = 216, L = 128 for random LUTS, L = 220 for Tardos codes
ILD
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previous sections, namely L = 128 for random LUTs,
L = 220 for Tardos codes, L = 215 for Tardos codes ILD.
In Fig. 8, we show the detection rate of random LUT and
Tardos solutions, respectively, for Pfa = 10−6 and a JPEG
compression with quality 80. Both techniques are affected
by JPEG compression and achieve worse results than in
the presence of additive Gaussian noise. It can be observed
that JPEG compression at a quality 80 is roughly equiva-
lent to additive noise with WNR = −5 dB. This suggests
that an embedding space larger than M = 216 should
be used to increase the robustness in a realistic scenario
including compression after the collusion attack.

Conclusions
Two different anticollusion solutions, specifically tailored
for a recently proposed asymmetric fingerprinting pro-
tocol based on client-side embedding, have been pro-
posed in this paper. In the first solution, the server
randomly encodes a client-owned fingerprint using a dif-
ferent projection matrix for each client. In the second
solution, a Tardos code is securely assigned to each client,
for example using the protocol in [33], and modulated
using a specially designed projection matrix. The per-
formance of both solutions has been analytically derived
assuming a correlation-based accusation strategy and an
averaging attack by the colluders. For the Tardos solution,
two different accusation strategies have been consid-
ered, namely, the symmetric accusation score proposed
by Škorić et al. and an accusation score optimized for
the interleaving attack under the combined digit model.
The analytical probability of detecting at least a colluder
has been compared to the experimental detection rates,
under different number of colluders and different false
alarm probability, confirming that the analytical model is
indeed very accurate. According to our results, the solu-
tion based on independent random projections outper-
forms the solutions based on binary Tardos codes, under
different choices of parameters. Namely, the first solu-
tion has a constant performance gain for low watermark-
to-noise ratios and appears much more convenient for
high watermark-to-noise ratios. The decoder optimized
for the interleaving attack is less robust to noisy chan-
nels, which is consistent with the fact that its optimal-
ity has been demonstrated only for the restricted digit
model. Moreover, the solution based on independent
random projections requires to manage a much shorter
client fingerprint with respect to binary Tardos codes.
The same trend has been confirmed by experimental
results including a JPEG compression after the averaging
attack.
It is worth noting that the proposed schemes have

been designed for a scenario that introduces some con-
straints on the available solutions. Namely, we assume
that each client is identified by a binary code, since

Fig. 8 Performance of different solutions for different numbers of
colluders at JPEG quality 80 and Pfa = 10−6. a random LUT; b Tardos
codes; c Tardos codes ILD
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we can rely on efficient protocols for securely dis-
tributing, in an asymmetric way, an encrypted version
of such binary codes [5, 33]. By relaxing these con-
straints, it would be possible to exploit more powerful
non-binary anticollusion codes in the Tardos solutions
[19, 21, 26, 27]. Extending the current protocols in order to
work with non-binary fingerprints is expected to improve
the results and is left for future work.
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18. B Škorić, TU Vladimirova, M Celik, JC Talstra, Tardos fingerprinting is better
than we thought. IEEE Trans. Inf. Theory. 54(8), 3663–3676 (2008).
doi:10.1109/TIT.2008.926307
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