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Abstract

In smart grids, providing power consumption statistics to the customers and generating recommendations for
managing electrical devices are considered to be effective methods that can help to reduce energy consumption.
Unfortunately, providing power consumption statistics and generating recommendations rely on highly
privacy-sensitive smart meter consumption data. From the past experience, we see that it is essential to find scientific
solutions that enable the utility providers to provide such services for their customers without damaging customers’
privacy. One effective approach relies on cryptography, where sensitive data is only given in the encrypted form to
the utility provider and is processed under encryption without leaking content. The proposed solutions using this
approach are very effective for privacy protection but very expensive in terms of computation and communication. In
this paper, we focus on an essential operation for designing a privacy-preserving recommender system for smart
grids, namely comparison, that takes two encrypted values and outputs which one is greater than the other one. We
improve the state-of-the-art comparison protocol based on Homomorphic Encryption in terms of computation and
communication by 56 and 25 %, respectively, by introducing algorithmic changes and data packing. As the smart
meters are very limited devices, the overall improvement achieved is promising for the future deployment of such
cryptographic protocols for enabling privacy enhanced services in smart grids.
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1 Introduction
Smart grids, as the next generation of power grid, are
utilizing both communication technologies and informa-
tion processing to monitor and manage power grids to
enhance reliability, efficiency, and sustainability of power
generation. One of the advantages of smart grids com-
pared to traditional power grids is the ability to observe
the power consumption of households in very short time
intervals in the order of seconds to minutes. As a result
of the fine-coarse data reporting, it is possible to provide
power consumption statistics to the consumers, which
might help to reduce the overall consumption by chang-
ing customer behavior, as pointed out in several works
[1–5]. For example, Honebein et al. [6] defined people
as the only true smart part of a smart grid; therefore,
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monitoring, understanding, and promoting the end-users’
roles from passive to active is considered as a fundamental
action in smart grids. To this end, there are already sev-
eral utility companies providing their customers devices
and smart phone applications to monitor their real-time
consumption. Furthermore, one of the goals of the util-
ity providers, balancing the supply and the demand, also
known as demand response (DR), can be achieved more
effectively if the utility provider can also provide statistics
about the power usage in the surrounding area and gener-
ate personalized recommendations, for example, to man-
age electrical devices like electric cars, heating systems,
and ovens in the household [7].
Providing statistics on power consumption and generat-

ing personalized recommendations to inform customers
are heavily dependent on the smart meter consumption
readings. Unfortunately, these readings are highly privacy-
sensitive [8–10]. The utility provider can use the readings
from the smart meters for other purposes, misuse them or
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even transfer them to other entities without the consent
of the customers. As seen in many cases, privacy is con-
sidered to be a big challenge for using smart meters to the
fullest extent, e.g., enabling personalized services such as
generating recommendations.
In this paper, we assume that the utility provider gener-

ates statistics and recommendations for the customers so
that the customers can adjust the electrical devices for the
most cost-effective and environmentally friendly manner.
To achieve this, we rely on cryptography, which pro-
vides us tools to create privacy by design algorithms. For
instance, there are already a number of studies for com-
puting bills and aggregating data [11–14]. The main idea
in this research line is to provide only the encrypted power
consumption to the utility provider and enable processing
the encrypted data without decrypting any sensitive infor-
mation. This way, the utility provider cannot access to the
content but at the same time can perform the algorithms
required for the service. Unfortunately, the cryptographic
algorithms for this purpose are expensive in terms of
computation and communication, which mostly require
smart meters to be involved in the computation [15–18].
Since the smart meters are very limited devices, improv-
ing the efficiency of the cryptographic algorithms is a
challenge.
We address the efficiency problem of a fundamen-

tal operation, namely comparison, which is required to
design any recommender system. In our setting, the
encrypted consumption readings are collected from the
customers by an aggregator and the utility provider has
the decryption key. For privacy reasons, the aggregator
cannot transfer the data directly to the utility provider but
can co-operate with the utility provider to generate rec-
ommendations. One important step in the system is to
compare values, which are only available in the encrypted
form. More precisely, the aggregator has two encrypted
values, and it needs to know which one is greater than
the other one without revealing their contents to anyone
including itself.
There are numerous comparison protocols designed for

comparing encrypted values [15, 16, 18]. In this paper,
we improve the state-of-the-art comparison protocol that
relies on homomorphic encryption in terms of run-time
by 56 % by introducing algorithmic changes. Furthermore,
we also reduce communication cost of the protocol by
25 % by deploying data packing [19, 20]. Together, these
improvements increase the overall efficiency of the com-
parison protocol with encrypted inputs, bringing smart
meters one step closer to run privacy-preserving crypto-
graphic protocols based on homomorphic encryption.
Note that a secure comparison protocol with encrypted

values is needed in many applications, not only for gener-
ating recommendations, like face recognition [17], finger-
code authentication [21], and K-means clustering [22].

Therefore, the protocol we improved in this paper pro-
vide a significant performance improvement for other
applications as well.

2 Preliminaries
In this section, we describe the application setting, the
security assumptions, and the cryptographic tools used in
this work. We also present the symbols and their descrip-
tions in Table 1.

2.1 Application setting
In our application setting, we define three roles: (1) smart
meters installed at the households, (2) a data aggregator,
and (3) a utility provider. Smart meters measure, encrypt,
and send consumers’ power consumption to the data
aggregator, which collects and analyzes encrypted power
consumption. Then, the utility provider generates recom-
mendations for its customers by running a cryptographic
protocol with the data aggregator. The output of the cryp-
tographic protocol, which depends on the purpose of the
recommender system, is in the encrypted form; thus, it is
not available neither to the data aggregator nor to the util-
ity provider. The output is then revealed to the customer
by using another protocol, secure decryption, which is
explained in [23].

2.2 Security model
The proposed protocol in this work is built on the semi-
honest adversarial model, where the data aggregator and
the utility provider are honest in the sense that they faith-
fully follow the designed protocol but will try to infer
information from the protocol execution transcript. This
assumption is realistic since companies are expected to
properly perform required services mentioned in the ser-
vice level agreement, when engaging in a collaboration.
We assume that the utility provider is the only party
holding the private keys, while the smart meters and the
data aggregator have the public keys for the encryption
schemes. We assume that neither party colludes.

2.3 Homomorphic encryption
In this work, we rely on two additively homomor-
phic cryptosystems, Paillier [24] and Damgård, Geislet
and Krøigaard (DGK) [15]. An additively homomorphic
encryption scheme preserves certain structure that can
be exploited to process ciphertexts without decryption.
Given Epk(m1) and Epk(m2), a new ciphertext whose
decryption yields the sum of the plaintext messages m1
and m2 can be obtained by performing a certain opera-
tion over the ciphertexts: Dsk(Epk(m1)) ⊗ (Epk(m2)) =
m1 + m2.
Consequently, exponentiation of any ciphertext with a

public value yields the encrypted product of the original
plaintext and the exponent:Dsk

(
Epk(m)e

) = e · m.
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Table 1 Symbols and their descriptions

Symbol Description Symbol Description

a, b Secret inputs h Uniformly random number

sk Secret key z The integer 2� + a − b

pk Public key z� The most significant bit of z

E Encryption function d Masked version of z, d = z + r

D Decryption function r̂ The integer rmod2�

m Plaintext d́ The integer dmod2�

Zη Paillier message space δ Uniformly random bit

Zu DGK message space [ .] Paillier encryption

∈R X A random number in X s The integer 1 − 2 · δ

� Bit length of secret inputs �.� DGK encryption

κ Security parameter ρ Number of ciphertext that

λη Carmichael function can be packed into one

r κ + �-bit random number Paillier ciphertext

ord(α) The smallest positive integer d̂ Packed Paillier ciphertexts

x such that αx = 1modn λ Comparison output

/ Integer division 	(x) �x/2��

2.4 Paillier cryptosystem
The Paillier encryption function for a given message m ∈
Zη is defined as follows:

c = Epk(m, τ) = gm · τη mod η2 , (1)

where η is the product of two distinct large prime numbers
p and q, ciphertext c ∈ Z

∗
η2
, τ ∈R Z

∗
η and g is a generator

of order η. The decryption function is,

Lη

(
cλη mod η2

)
Lη

(
gλη mod η2

) mod η = m , (2)

where λη is the Carmichael value that is the smallest
positive integer such that {∀a ∈ Z

∗
η : aλη ≡ 1 (mod η)}

and Lη(x) = x−1
η
. The public key is (g, η) and the private

key is λη.
The homomorphic property can be shown as below:

Dsk((Epk(m1)) × (Epk(m2)) = Dsk
(
gm1 · τ

η
1 × gm2 · τ

η
2
)

= Dsk(gm1+m2 · (τ1 · τ2)
η) = Dsk(Epk(m1 + m2))

= m1 + m2 . (3)

2.5 DGK cryptosystem
We also use the DGK cryptosystem [15, 25], which is used
in constructing cryptographic protocols [17, 23] for its
efficiency due to its small message size. For generating the
public and the private keys, there are three parameters: k,
t, and �, where � < t < k. The process of key generation
is as follows:

1. Choose two distinct t-bit prime numbers vp, vq.
2. Construct two distinct prime numbers p and q,

where vp|(p − 1) and vq|(q − 1) such that n = pq is a
k-bit RSA modulus.

3. Choose u, the smallest possible prime number but
greater than � + 2.

4. Choose a random r that is a 2.5t-bit integer [15].
5. Choose g and h such that ord(g) = uvpvq and

ord(h) = vpvq.

The public and the private keys are pk = (n, g, h,u)

and sk = (p, q, vp, vq), respectively. The encryption of a
plaintextm ∈ Zu is given as follows:

c = Epk(m, r) = gm · hr mod n . (4)

To decrypt the ciphertext, one can build a look-up table
for all m ∈ Zu values and obtain m from cvp mod p =
(gvp)mmodp. However, DGK scheme can efficiently check
whether a ciphertext is an encryption of zero or not. To
achieve this, we check whether cvpvq mod n = 1 or more
efficiently we only need to prove that cvpvq mod p = 1 or
cvpvq mod q = 1, since u < p.
In the rest of the paper, we denote the ciphertext of a

message m by [m] for the Paillier cryptosystem and �m�
for the DGK.

3 Secure comparison protocol with secret inputs
In this section, we describe the state-of-the-art secure
comparison protocol (SCP), which takes two encrypted
inputs and outputs the greater one in the encrypted form.
SCP based on the DGK construction introduced in [25]
is one of the widely-used comparison protocols due to
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its efficiency. The DGK comparison protocol is a sub-
protocol in the SCP, where each party possesses a secret
but plaintext value. The sub-protocol also uses the DGK
cryptosystem for efficiency reasons.
The comparison protocol in [25] is modified and used

by Erkin et al. in [17], and Veugen proposed an improved
DGK comparison protocol (IDCP) in [18]. In the follow-
ing, we describe the SCP construction.
For the sake of simplicity, we use the names Alice and

Bob as the data aggregator and the utility provider, respec-
tively. We assume that Bob has the secret key sk and Alice
has access to two encrypted values, [ a] and [ b], and wants
to know if a < b.
Initially, Alice computes [z]= [

2� + a − b
] =[

2�
] ·[ a] ·[ b]−1 and then obtains the result of comparison

as follows:

[z�] =
[
2−� ·

(
z −

(
z mod 2�

))]

=
(
[z] ·

[
z mod 2�

]−1
)2−�

, (5)

where [z�] is the most significant bit of [z] and the result
of comparison. If z� = 1 then we have a > b, and
otherwise a < b. A more efficient method of comput-
ing [z�] is based on the IDCP, where we can compute
z� = �z/2�� and [ a < b]=[1−z�]=[1] ·[ z�]−1, but we still
need to compute

[
zmod 2�

]
. A more detailed explanation

regarding computation of [z�] is provided in the following
sections.

3.1 Computing
[
zmod 2�

]

Notice that Alice has access only to [z], and interaction
with Bob, who has the private key, is needed to compute
modulo reduction, [ zmod 2�]. However, Alice cannot give
[z] directly to Bob since this value reveals information on
the difference of a and b. Therefore, Alice masks [z] using
a random value as follows:

[d]=[z + r]=[z] ·[r] , (6)

where r is a (κ + �)-bit uniformly random number and
κ is a security parameter. After masking, Alice sends [d]
to Bob to perform modulo reduction, where Bob first
decrypts [d], then computes d́ = d mod 2� and sends [d́]
and [d/2�] back to Alice. Subsequently, to obtain [z mod
2�], Alice computes [ z̃ mod 2�]=[d́ − r mod 2�]=[d́] ·[ r
mod 2�]−1 .
Note that z mod 2� = z̃ mod 2� if d́ > r mod 2�. When

d́ < r mod 2�, an underflow occurs, and Alice has to add
2� to [z̃] to make the value positive again. Therefore, Alice
needs to determine whether d́ > rmod2� or not. This
is achieved by computing an encrypted value, [λ], which

shows the relation between d́ and r mod 2�. Then, Alice
can perform following computation to obtain [ zmod 2�]:[

zmod 2�
]

=
[
z̃ + λ2�

]
=[z̃] ·[λ]2�

. (7)

Alice can obtain [z�] by using Eq. 5. [z�] can be com-
puted more efficiently as follow:

[z�]=[	(z)]=[	(d)] ·[	(r)]−1 ·[λ]−1 , (8)

where 	(x) = �x/2��. For computing [λ], we run a secure
comparison protocol with private inputs as described in
the following section.

3.2 Computing [λ]
This protocol outputs an encrypted bit, which shows
whether d́ > r̂ = r mod 2� or not. However, differ-
ent than the original problem of comparing encrypted a
and b, in this protocol Alice and Bob possess r̂ and d́ in
plaintext, respectively. Based on this setting, the IDCP for
computing [λ] securely works as follows:

1. Bob sends a bitwise encryption of his input,
�d́0�, . . . , �d́�−1�, to Alice.

2. Alice chooses uniformly random bit δ, where
δ ∈ {0, 1}. Then she computes s = 1 − 2 · δ and �ci�
as follows,

�ci� = �d́i − r̂i + s + 3
�−1∑
j=i+1

d́j ⊕ r̂j�

= �d́i� · �r̂i�−1 · �s� ·
⎛
⎝ �−1∏

j=i+1
�d́j ⊕ r̂j�

⎞
⎠

3

, (9)

where �d́j ⊕ r̂j� = �d́j� · �r̂j� · �d́j�−2·r̂j , and
i = 0, . . . , � − 1.

3. Alice blinds each �ci� with a uniformly random
hi ∈R Z

∗
u such that

�ei� = �ci · hi� = �ci�hi , (10)

then permutes �ei� and sends them to Bob. Note that
if ct = 0, where t ∈ {0, . . . , � − 1} then et = 0 as well.

4. Bob checks whether there is a zero among �ei�
values. If none of the �ei� values are encrypted zero
then he sets λ̃ = 0, otherwise λ̃ = 1. Then he
encrypts λ̃ and sends [λ̃] to Alice.

5. Alice corrects [λ̃] to obtain [λ] as follows:

[λ]=
{
[λ̃] if s = 1
[1] ·[λ̃]−1 if s = −1

After obtaining [λ], Alice computes [ z mod 2�] and [ z�]
based on Eqs. 7 and 5 respectively.
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4 Efficient privacy-preserving comparison
protocol

In this section, we describe a new version of the original
SCP based on the DGK construction, which is signifi-
cantly more efficient in terms of run-time and communi-
cation cost.

4.1 Proposed comparison protocol
Complexity analysis and experimental results reveal that
the XOR operation in computing �ci�, in Eq. 9, has a
significant impact on the overall efficiency of the DGK
comparison protocol for the following two reasons:

1. Computing XOR is computationally expensive, since
�r̂ ⊕ d́� = �r̂� · �d́� · �d́�−2·r̂ . Veugen [18] proposed a
more efficient technique of computing XOR, where
�r̂ ⊕ d́� = �d́� when r̂ = 0; otherwise,
�r̂ ⊕ d́� = �1� · �d́�−1 (recall that Alice and Bob have
access to values r̂ and d́, respectively and Alice is
computing XOR). Thus, if r̂ equals to 1, one
multiplication and one exponentiation with negative
exponent should be computed over DGK ciphertexts,
which affects the performance of DGK comparison
protocol significantly.

2. Since the equation that involves XOR is computed
during the protocol with encrypted inputs, it is not
possible to introduce pre-computation for �ci� to
obtain a more efficient protocol.

Table 2 shows that computing �ci� constitutes 70 % of the
overall run-time of the IDCP for Alice.
Based on these two facts, we propose a more efficient

way of computing �ci�, which does not rely on the original
XOR computation. The value �ci� can be re-written as
follows:

�ci� =
�
�d́i − r̂i + s +

�−1∑
j=i+1

(
d́j · 2j − r̂j · 2j

)�
� . (11)

Table 2 Run-time performance for several steps of the IDCP

Function Time (second) Overal computation (%)

Alice

Computing �ci� 15 70

�ei� ← Masking �ci� 3.15 15

Other 3.15 15

Bob

DGK zero-check 27.3 38

Paillier decryption 44.4 62

Total 93

Alice computes Eq. 11 in three steps:

1. Bob computes �ti� =
�
d́i + ∑�−1

j=i+1 d́j · 2j
	
, and

sends �ti� to Alice.
2. Alice computes �vi� =

�
s − r̂i − ∑�−1

j=i+1 r̂j · 2j
	
.

3. Alice computes �ci� as follows,
�ci� = �ti + vi� = �ti� · �vi� . (12)

Note that Alice can pre-compute �vi� and factor “3” is
not needed in the computation of �ci�. After computing all�ci� values, Alice masks each �ci� and sends masked values
to Bob, where he checks if any of the given masked �ci�
is zero, then generates [ λ̃], and sends it to Alice. She cor-
rects [ λ̃] based on value s to obtain [ λ], computes Eq. 7,
and 5 to obtain [ z�] as in the original protocol. Note that
we compare 2d́ and 2r̂ instead of d́ and r̂ respectively for
technical reasons explained in the following section.

4.1.1 Correctness proof of computing �ci�
In this section, we prove the correctness of generating �ci�
by Eq. 12. In order to do that, we check if Eq. 12 generates
encrypted zero in the same conditions as the Eq. 9. Table 3
shows the values of ci computed based on the efficient
privacy-preserving comparison protocol (EPPCP) and the
IDCP, which are denoted as cEi and cIi , respectively. Table 3
analyzes the existence of zero in cEi generated based on
the s, d́, r̂, and Si+1 = ∑�−1

j=i+1

(
d́j · 2j − r̂j · 2j

)
values.

Based on this table, the value of cIDCPi can be zero in two
conditions, where {d́ < r̂, s = 1, d́i = 0, and r̂i = 1} and
{d́ > r̂, s = −1, d́i = 1, and r̂i = 0}. However, cEi gener-
ates zero in more conditions than cIi does. For instance, if
{Si+1 = 2, s = −1, d́ > r̂, and d́i = r̂i = 1}, then cEi = 0.
Table 3 shows that values of cIi can be zero in the condi-
tions 4 and 5; however, cEi values are zero in the conditions
3, 4, 5, and 6 based on the assumed values of Si+1 for each
condition. We note that if d́1d́0 ∗ r̂1r̂0 = 2 and d́i = r̂i
for 2 � i � � − 1, then the value of cE0 becomes zero. To
fix this problem, we compare 2d́ and 2r̂ instead of d́ and
r̂. Therefore, Eq. 12 does not generate zero in the condi-
tions 3 and 6. Furthermore, for the comparison protocol
to work when d́ = r̂, we compare 3d́ and 3r̂ + 1 instead of
d́ and r̂ respectively, as suggested similarly in [17].

4.2 Data packing
According to Table 2, Paillier decryption of [d] (Eq. 6)
dominates more than 62 % of the comparison protocol
execution time at Bob side. We decrease the run-time of
Paillier decryption by employing data packing similar to
[19, 20]. The main idea behind data packing is to effi-
ciently use the message space of the Paillier cryptosystem
that is much larger than the values to be compared.



Nateghizad et al. EURASIP Journal on Information Security  (2016) 2016:11 Page 6 of 8

Table 3 Different conditions based on s, d́ and r̂

Condition d́ > r̂ s d́i r̂i Si+1 cEi cIi

1 True 1 0 1 0 Nonzero Nonzero

2 True 1 1 0 −2 Nonzero Nonzero

3 True −1 0 1 2 Zero Nonzero

4 True −1 1 0 0 Zero Zero

5 False 1 0 1 0 Zero Zero

6 False 1 1 0 −2 Zero Nonzero

7 False −1 0 1 2 Nonzero Nonzero

8 False −1 1 0 0 Nonzero Nonzero

Assume that z and r are � and �+ κ-bit integers, respec-
tively. Then, [d]=[z + r] is a (� + κ + 1)-bit integer. Let
the message space of the Paillier cryptosystem be η = pq,
then Alice packs ρ = �(� + κ + 1)/η� into one Paillier
message as follows:

[d̂]=
ρ−1∑
j=0

[d]j ·
(
2�+κ+1

)j
, (13)

and sends [d̂] to Bob. Then, Bob computes Dsk
(
[d̂]

)
,

unpacks ρ different values and performs modulo reduc-
tion on each unpacked value.
Employing the data packing technique not only reduces

the number of very expensive Paillier decryption to be
performed but also decreases the number of encrypted
messages to be transmitted.

5 Performance analysis
In this section, we analyze the number of operations
over ciphertexts, since they are computationally expensive
compared to operations on the plaintext and dominate
the protocol execution run-time and provide experimen-
tal results for run-time performance. For this purpose,
we implemented the EPPCP using C++ and SeComLib
[26] library, on a Linux machine running Ubuntu 14.04
LTS, with 64-bit microprocessor and 8 GB of RAM. The
experiments are repeated for 10,000 comparisons. Table 4
provides more information about parameters and their
corresponding values in our implementation.

Table 4 Parameters and their values used in the implementation

Parameter Symbol Value

Bit size of inputs � 25 bits

Security parameter κ 40 bits

Paillier message space η 2048 bits

DGK message space n 2048 bits

Number of [ d] packed

into one Paillier ciphertext ρ 31

Table 5 shows the computational complexity of the orig-
inal DGK comparison protocol, the IDCP, and the EPPCP.
Note that the number of multiplications and exponenti-
ations are regarding the computation of �ci�. According
to the Table 5, the original DGK comparison protocol
suffers from its high computational complexity regarding
the number of multiplications and exponentiations over
ciphertexts. Veugen [18] presented two improvements to
decrease the computational cost of the DGK comparison
protocol, namely an efficient method to compute XOR
and an algorithm to mask less �ci�, which results in a
lower number of exponentiations with positive exponent.
However, according to Table 5, the new technique of com-
puting XOR have a slight impact on the overall number
of multiplications and exponentiations. Moreover, Table 2
shows that computation of �ei� takes 15 % of the proto-
col run-time in Alice (the improvement for computing �ei�
[18] is not applied in the implementation); therefore, even
a significant improvement over computation of �ei� does
not provide a significant influence on the overall run-time.
Table 5 shows that the computational complexity of

computing �ci� in the EPPCP is decreased to � multiplica-
tions over ciphertexts, and there is no exponentiation with
positive or negative exponent. According to Table 6, this
low computational complexity results in 91 % decrease in
computation of �ci� compared to the IDCP. This improve-
ment also reduces the run-time of all computations per-
formed by Alice by 64 %.

Table 5 Computational complexity of original DGK [17, 25], the
IDCP, and the EPPCP

Function Original DGK IDCP EPPCP

Encryption 1Paillier + �DGK 1Paillier + �DGK 1Paillier + �DGK

Decryption 1Paillier 1Paillier

(
1

ρ

)
Paillier

DGK zero-check � � �

Multiplication �(� + 2) ∼ �(� + 11)

4
�

Exponentiation(+) � � 0

Exponentiation(−)
�(� + 1)

2
∼ �(� + 3)

4
0
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Table 6 Run-time performance of the several steps of the EPPCP
and the improvements compared to the IDCP

Function Time (second) Improvement (%)

Alice

Computing �ci� 1.40 91

�ei� ← Masking �ci� 3.15 0

Other 3.15 0

Bob

DGK zero-check 27.3 0

Paillier decryption 6.40 85

Total 41.4

Table 2 also shows that Paillier decryption dominates
62 % of the IDCP run-time by Bob. According to the
Table 6, by deploying data packing the run-time of
the Paillier decryption and all Bob’s computations are
decreased by 85 and 53 %, respectively.
Table 7 shows the running times of the Paillier decryp-

tion (PD), computation of ci, and the total run-time
(online phase) of both the EPPCP and the IDCP for dif-
ferent key sizes. It shows that the EPPCP achieves better
efficiency compared to the IDCP for the large key sizes.
According to Table 8, running EPPCP 10,000 times takes

41 s, where it takes 93 s for the IDCP. Table 8 also shows
that pre-computation phase takes more time in EPPCP
as a result of the new method of computing �ci�, which
allows performing more initial computations before run-
time. The communication cost between Alice and Bob is
decreased by 25 % in EPPCP because of using data packing
technique.

6 Security and privacy of comparison protocol
In this section, we provide a security sketch of the pro-
posed privacy-preserving comparison protocol in the
semi-honest model. For a more elaborate security proof,
we refer readers to [25].
As mentioned before, smart meters encrypt the power

consumption using the Paillier cryptosystem, which is
semantically secure under the decisional composite resid-
uosity assumption (for more information about the
security of Paillier cryptosystem, we refer reader to [24]);
thus, Alice (data aggregator) has only encrypted values.
Here, we show that not only does Bob (utility provider)

Table 8 Overall performance of the IDCP and the EPPCP

Protocol Run-time Pre-computation Number of
(second) (second) communications

IDCP 93 7.4 40k

EPPCP 41.4 13.8 30k

Improvement +56 % −87 % +25 %

not learn anything about the given encrypted values but
also Alice does not learn any information about encrypted
output of the algorithm at the end of the proposed com-
parison protocol.
Alice computes together with Bob [z mod 2�] without

revealing any information about [z] to him. Since this
value reveals information on the distance between a and
b; therefore, Alice masks [z] by adding a random value,
[d]=[ z + r], and sends [d] to Bob instead of [z]. Since r
is a uniformly random (k + �)-bit value, [z] is statistically
indistinguishable from [d] to Bob.
Bob sends back [d mod 2�] to Alice in the encrypted

form, which means she cannot learn any information
about the content of [z], but only [ z mod 2�]. Then
Alice sends �ei� values, which are the masked and the
permuted �ci� values, to Bob who checks the existence
of an encrypted zero among given �ei�. Therefore, Bob
only receives a list of uniformly random values. Moreover,
using a binary random value s through computation of�ci� prevents Bob from drawing any conclusions about the
result of the comparison by checking �ei�. Since Alice is
not authorized to know the result of the comparison, Bob
only sends the encrypted value of λ̃, [λ̃], to Alice. Then,
she can only correct the [λ̃] based on s to obtain [λ] and
compute [z�].

7 Conclusions
Comparing consumers’ power consumption profiles is a
necessary part of smart grids for a number of services
including generating personalized recommendations.
Since personal profiles contain private information about
consumers’ power consumption, privacy-preserving
approaches should be considered. One of the most effec-
tive approaches is based on using cryptographic tools that
enable processing encrypted data. Unfortunately, secure
and privacy-sensitive versions of such services are com-
putationally expensive, which hinders the deployment of

Table 7 Performance of the IDCP and the EPPCP for different key lengths

512 bits 1024 bits 2048 bits

Protocol ci PD Run-time ci PD Run-time ci PD Run-time

IDCP 2.7 0.8 6.9 5.9 6.1 21.5 15.0 44.4 93.0

EPPCP 0.1 0.5 4.2 0.3 2.0 13.2 1.4 6.4 41.4

Improvement 96 % 37 % 39 % 95 % 67 % 39 % 91 % 85 % 55 %
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such protocols in practice. In this paper, we investigated
a vital operation that is invoked numerous times during
many algorithms, namely comparison, and improve its
performance significantly by introducing algorithmic
changes and deploying data packing. By doing so, we
improve the efficiency of the state-of-the-art secure
comparison protocol based on homomorphic encryption.
More precisely, we reduce the run-time of computations
by the data aggregator and the utility provider by 64 and
52 %, respectively. In terms of overall performance, the
proposed comparison protocol is faster than state-of-
the-art by 56 % and the communication cost is reduced
by 25 %. This improvement in performance leads to a
more practical comparison protocol that can be used for
designing privacy-preserving protocols.
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