
EURASIP Journal on
Information Security

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information
Security (2016) 2016:12
DOI 10.1186/s13635-016-0035-2

RESEARCH Open Access

Generalized weighted tree similarity
algorithms for taxonomy trees
Pramodh Krishna D.1* and Venu Gopal Rao K.2

Abstract

Taxonomy trees are used in machine learning, information retrieval, bioinformatics, and multi-agent systems for
matching as well as matchmaking in e-business, e-marketplaces, and e-learning. A weighted tree similarity algorithm
has been developed earlier which combines matching and missing values between two taxonomy trees. It is shown
in this paper that this algorithm has some limitations when the same sub-tree appears at different positions in a pair
of trees. In this paper, we introduce a generalized formula to combine matching and missing values. Subsequently,
two generalized weighted tree similarity algorithms are proposed. The first algorithm calculates matching and missing
values between two taxonomy trees separately and combines them globally. The second algorithm calculates
matching and missing values at each level of the two trees and combines them at every level recursively which
preserves the structural information between the two trees. The proposed algorithms efficiently use the missing value
in similarity computation in order to distinguish among taxonomy trees that have the same matching value but with
different miss trees at different positions. A set of synthetic weighted binary trees is generated and computational
experiments are carried out that demonstrate the effects of arc weights, matching as well as missing values in a pair
of trees.

Keywords: Taxonomy trees, Similarity measures, Weighted tree similarity, Generalized weighted tree similarity,
Match-miss-measure

1 Introduction
Semantic concept similarity methods and tree similarity
techniques have wide range of applications in machine
learning [1], e-business [2], e-learning [3], information
retrieval [1], case-based reasoning (CBR) [4], image
processing and analysis [5], and bioinformatics [5]. In
particular, they have many applications in the area of
computational linguistics and artificial intelligence such
as word sense disambiguation [6], detection and correc-
tion of word spelling errors (malapropisms) [7], text seg-
mentation [8], and multi-agent system in e-business and
e-learning [2].
Taxonomy is a hierarchical structure that represents

relationships among concepts using a tree or graph. Con-
cepts are generalized or specialized depending on the rela-
tionships among concepts in the hierarchy. Each concept

*Correspondence: pramodhkrishna.d@gmail.com
1CSE, Priyadarshini College of Engineering and Technology, Nellore, India
Full list of author information is available at the end of the article

might have many sub-concepts which are called special-
ization of the concept and they are represented as children
of a concept. A group of concepts might be represented
with a single concept which is called generalization of the
concepts and it is represented as a parent of the concepts.
Concept matching in taxononomy trees is an important
task among several semantic concept similarity methods
such as schema matching, element matching, and concept
matching [9].
A lexical taxonomy is assumed to be structured in a

tree-like hierarchy with the concepts represented at every
node of the tree. There are many semantic concept sim-
ilarity methods [10] which can be categorized into two
groups: (i) edge counting-based (or dictionary/thesaurus-
based) methods and (ii) information theory-based (or
corpus-based) methods. Edge counting-based similarity
methods [11], e.g., minimum number of edges separat-
ing concepts c1 and c2, use a metric for measuring the
conceptual distance of c1 and c2; these methods are use-
ful for specific applications with highly constrained tax-
onomies. Information theory-based methods [12] extract

© 2016 D. and K. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-016-0035-2-x&domain=pdf
mailto: pramodhkrishna.d@gmail.com
http://creativecommons.org/licenses/by/4.0/

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 2 of 12

maximum information content of the concept by find-
ing the negative log likelihood of its probability. Hybrid
method such as combination of multiple information
sources non-linearly [10] is used to improve semantic
similarity. Similarly, tree-based similarity techniques are
used in information retrieval. That is, unlike vector space
model, interest trees are used to discover groups of users
with similar interests in social networking services [13].
Tree-based similarities such as semantic search in digital
library which combines Latent Semantic Analyses (LSA)
and weighted trees to find similarity between the book’s
weighted tree and user query weighted tree [14]. Similar-
ily, text retrieval that uses dictionary-based semantic tree
to weight the words between query and document is used
to find semantic similarities [15].
In literature, tree similarity techniques consider node-

labeled trees, whether they are ordered [16, 17] or
unordered [18]. These techniques include operations like
insertion, deletion and node label substitution [19] with
costs defined to transform one tree to another to enable
the computation of a distance (which is complementary
to, or inverse of, similarity). For local tree matching [20],
operations such as merge, cut, and merge-and-cut, with
associated operation costs, are also defined to find the
best approximate match and matching cost. The Ham-
ming distance [21] is also used in some approaches [22]
to compute a tree distance. These techniques require
three or four edit operations which ignore the similar-
ity among single nodes and are extremely complicated.
Hence, Wang et al. [23] introduced a mapping-based
tree similarity algorithm captures node similarity using a
dynamic programming scheme and omits inserting and
deleting operations.
Tree similarity techniques, with preferences of concepts

as weights to the corresponding edges in tree repre-
sentation named as a weighted tree, have been intro-
duced in a multi-agent system. These techniques are
used for matchmaking in e-business environments [2, 24],
e-marketplaces [25, 26], P2P e-marketplaces [27, 28], and
RNA secondary structure comparison [29]. It allows user
preferences to be specified as arc-weights wherein an arc-
weight represents importance of a concept. The algorithm
combines matching and missing tree values to find the
similarity between two taxonomy trees. The missing tree
value could be used to rank (or distinguish) the similarities
of two or more trees that have the same matching value,
but, different missing values. The missing value is calcu-
lated using a simplicity function which returns a value
between 0 and 1 depending on the structure of a missing
tree and associated arc weights. However, this method has
some drawbacks such as the way it combines missing and
matching tree value in similarity computation. It performs
the summation of the simplicity value of a missing tree
which is a sibling tree and performs multiplication of the

simplicity value of the missing tree which is a child tree
in similarity computation. Fuzzy concepts are introduced
and a non-symmetric fuzzy similarity is developed in [30]
which assumes identical tree structures and uses only the
matching value.
In this paper, we propose two generalized weighted

tree similarity algorithms. We introduce a generalized
formula to combine the matching and missing values
in order to find the similarity between two taxonomy
trees. It also determines the importance of the matching
and missing value. The first generalized algorithm cal-
culates matching and missing information between two
taxonomy trees separately and combines them globally.
The second generalized algorithm calculates matching
and missing values at each level of the two trees and
combines them at every level recursively, preserving the
structural information present in the trees while calcu-
lating similarity. The proposed algorithms efficiently use
the missing value in order to distinguish among taxonomy
trees that have the same matching value, but, have dif-
ferent missing values. A set of synthetic weighted binary
trees is generated and computational experiments are car-
ried out. Our results illustrate the effects of arc weights
and matching as well as missing values between two
trees.
The paper is organized as follows. Section 2 briefly

explains notations and definitions, followed by the
weighted tree similarity algorithm. Section 3 describes
drawbacks of the existing tree similarity algorithm with
an illustrative example followed by a proposed general-
ized formula to combine matching and missing values.
Section 4 proposes the generalized weighted tree similar-
ity algorithms. Section 5 describes the synthetic trees and
presents experimental results. Finally, Section 6 concludes
the paper.

2 Weighted tree similarity algorithm
(wT-similarity)

In this section, we briefly introduce notations and
definitions followed by the existing weighted tree sim-
ilarity algorithm [2]. The original algorithm is pre-
sented using Relfun, whereas we give a more generic
specification.

2.1 Notation and definitions
Let T and T ′ be the roots of two given trees. Let the
root node of tree T have m arcs which are represented
as l1, l2, . . . , lm and the sub-tree associated with arc li is
represented with the subroot node Ti, for i = 1 to m.
Let the root node of tree T ′ have n arcs which are rep-
resented as l′1, l

′
2, . . . , l

′
n and the sub-tree associated with

arc l′j is represented with the subroot node T ′
j , for j =

1 to n. Let the weight of arc li be represented as w(li)

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 3 of 12

and the weight of arc l′j be represented as w(l′j). Let the
node label be represented asNode-label(T). The similarity
between two trees can be calculated by comparing node
labels of the two trees recursively (see Section 2.2 for more
details).

Definition 1. Normalized arc-labeled, arc-weighted
tree [31]. A normalized arc-labeled, arc-weighted tree is a
5-tuple T = (V ,E, LV , LE , LW) consisting of a set of nodes
(vertices)V, a set of arcs (edges) E, a set of node labels LV ,
a set of arc labels LE and a set of arc weights LW =[0, 1]
having a fan-out-weight-normalized (n → 1, n ≥ 1) map-
ping from the elements in E to the elements in LW , i.e. the
weights of every fan-out add up to 1.0.

2.2 Weighted tree similarity algorithm
This subsection describes the existing weighted tree sim-
ilarity algorithm proposed by Bhavsar et al. [2]. The
algorithm carries out a recursive top-down traversal com-
parison of two given normalized arc-labeled, arc-weighted
trees (see Definition 1) which computes a similarity value
between [0, 1]. If the two trees and their respective con-
cepts (i.e., entire structures) are the same, then the simi-
larity is equal to 1, otherwise if the root concepts of two
trees are different the similarity equal to 0. For all other
cases the similarity value is between 0 and 1.
Initially, the weighted tree similarity algorithm com-

pares the labels of the root node of two given trees (see
Algorithm 1). If the labels are different, then it returns the
similarity as zero. Otherwise, if the labels are same, then
it works as follows. If the two nodes are leaf nodes, then
the weighted tree similarity algorithm returns 1 (shown as
case 1 in Fig. 1). If the root node of one of the trees is also a
leaf and of the other tree is a non-leaf, then the algorithm
computes similarity as the sum of weighted simplicity val-
ues of the sub-tree associated with each arc of the non-leaf
node (see cases 3 and 4 in Fig. 1). Suppose li arc is asso-
ciated with the sub-tree Ti, then the weighted simplicity
value is calculated asw(li)/2multiplied with the simplicity
value of the sub-tree Ti. The simplicity algorithm (given in
Section 2.3) computes contribution of the missing tree in
the similarity computation. Now, consider case 2 in Fig. 1.
If the root nodes of two trees are non-leaf nodes, then
the algorithm compares the arc-labels of the root nodes of
these two trees and computes similarity as follows:

1. For each pair of identical arcs, the average weight of
these arcs is computed and then it is multiplied with
the weighted tree similarity of their sub-trees
recursively. Finally, the similarities computed for
each pair of identical arcs are added.

2. If an arc is present in one tree and it is not present in
the second tree, then the similarity is computed as
the weighted simplicity values of the missing tree

Algorithm 1 wT-similarity(T , T ′)

match = 0, λvalue= 0, 0 < ε <= 1;
if Node-label(T) = Node-label(T ′) then

{Case.1 in Fig. 1}
if T & T ′ are leaf nodes then

Return 1;
else

{Case.2 in Fig. 1}
if T & T ′ are non-leaf nodes then

for each pair of identical arc labels li ∈ T and
l′j ∈ T ′ do
match = match + (w(li) + w(l′j))/2 * wT-
similarity(Ti, T

′
j);

end for
for each arc li which is present in T and it does
not present in T ′ do

λvalue= λvalue + w(li)/2 * λ(1.0, Ti);
end for
for each arc l′j which is present in T ′ and it does
not present in T do

λvalue = λvalue + w(l′j/2) * λ(1.0, T ′
j);

end for
Return (ε + (1 − ε) * (match + λvalue));

else
{Case.3 in Fig. 1}
if T is a non-leaf & T ′ is a leaf then
for each arc li ∈ T do

λvalue = λvalue + w(l′j)/2 * λ(1.0, Ti);
end for
Return (ε + (1 − ε) * (λvalue));

else
{Case.4 in Fig. 1}
if T is a leaf & T ′ is a non-leaf then

for each arc l′j ∈ T ′ do
λvalue = λvalue + w(li)/2 * λ(1.0, T ′

j);
end for
Return (ε + (1 − ε) * (λvalue));

end if
end if

end if
end if

else
Return 0;

end if

(because the missing tree value should contribute to
the similarity computation).

Note that the weighted tree similarity algorithm com-
putes two parts of the similarity. If the two node labels are
identical, then the first part defines a small similarity value
contribution due to identical node labels: 0 < ε < 0.5.

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 4 of 12

Fig. 1Weighted tree similarity technique

The similarity of the sub-trees of these two nodes (com-
puted recursively) is multiplied with 1 − ε and this forms
the second part and it is added to the first part. This idea
avoids giving zero similarity in the recursive procedure if
the root node labels of two trees are same, but all chil-
dren labels are different; in this case, it guarantees a small
ε value due to identical node labels.
The similarity in the above approach is computed by

recursive top-down (root-leaf) traversal of all correspond-
ing nodes of the two trees as given in Algorithm 1 and fol-
lowed by the simplicity algorithm explained in Section 2.3.

2.3 Simplicity algorithm for missing trees
In this section, simplicity algorithm [31] is explained. If
any missing tree is present in one of the two trees for
which the similarity is evaluated, then the missing tree
contribution is given by simplicity algorithm. It is intro-
duced by Lu Yang et al. in [31] where the simplicity
algorithm depends on the structure of the missing tree.
The simplicity algorithm has two parameters: one

simplicity factor (r) which initializes the missing tree con-
tribution in similarity computation and the other param-
eter is the missing tree T . This function returns a value
between [0, r]. If the tree has only one missing node, then
its simplicity value is r. If the tree grows vertically, then
the depth degradation factor d is used to decrease simplic-
ity value of a tree which is taken as 0.5. If the tree grows

horizontally, then the weighted average of all its child
sub-trees simplicity function value is used. If a tree hori-
zontally and vertically grows infinitely, then its simplicity
value approaches to zero. The algorithm for simplicity
function is given in Algorithm 2. The recursive simplicity
function is given below:

λ(r, T) =
{
r if T is a leaf,
1
m

∑m
j=1 w(lj) ∗ λ(r.d,Tj) otherwise

(1)

λ(r, T) is a simplicity function

r- is the simplicity factor
d-is depth degradation factor (which is equal to 0.5)
m-m arcs for a tree T specified as lj, for j = 1 tom.
Tj- is the subtree attached to arc lj
w(li)- is the weight of arc li, for j = 1 tom.

3 Limitations of the weighted tree similarity
algorithm

This section first describes an example to explain the lim-
itations of the existing weighted tree similarity algorithm.
This section also introduces a generalized formula to com-
bine the matching and missing values of two taxonomy
trees. The generalized formula combines both of these
values as harmonic mean between them which follows
F-measure in statistical theory.

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 5 of 12

Algorithm 2 λ(r, T)
d = 0.5, sum = 0;
if T is a leaf node then

Return (r);
else

{ let the tree T hasm arcs and each arc has weight(li)
and subtree Ti, for i = 1 tom.}
for each arc li of root node T do

sum = sum + weight(li) * λ(r ∗ d, Ti);
end for
sum = 1

m× sum;
Return sum;

end if

3.1 Limitations
Figure 2 represents three trees in which tree T1 and tree
T2 differ a missing sub-tree at node NA whereas tree T1
and tree T3 differ a missing sub-tree at node Head. The
missing sub-tree is same in both cases but present as a
child tree at tree T2 and present as a sibling tree at tree
T3 when compared to tree T1. The existing weighted tree
similarity algorithm calculates the similarity between tree
T1 and tree T2 as (1.0+1.0)

2 × 1.0
2 ×0.5 = 0.25 and the simi-

larity between tree T1 and tree T3 as (1.0+0.5)
2 + 0.5

2 ×0.5 =
0.875. The matching value is 1.0 between tree T1 and tree
T2 whereas 0.75 between tree T1 and tree T3. However,
the simplicity of the missing sub-tree is 0.5 in both the
cases which decreases similarity value in one case and
increases similarity value in other case when compared
with matching value. These two cases likely to have same
similarities since same matching and missing values.

3.2 A generalized measure
We introduce a generalized formula to combine the
matching andmissing values between two taxonomy trees
which is given in Eq. 2. Let the matching value be match
andmissing value be λvalue. The generalized formula uses
the missing value always less than or equal to matching
value such that it gives a resultant similarity which is less

than or equal to the matching value between two tax-
onomy trees . It means that the missing value reduces
the similarity when compared to the matching value after
combining them using the generalized formula. If there
is no missing tree, then the missing value is equal to
matching value such that for any β value the combined
formula is equal to matching value only (see Eq. 2). Let the
combined similarity value be τ

τ = (β2 + 1) ∗ match ∗ λvalue
β2 ∗ match + λvalue

(2)

If there is any missing tree, then the missing value is less
than the matching value such that the combined formula
reduces its similarity when compared to matching value.
The parameter β gives the importance between match-
ing and missing values. If β < 1, then matching value has
more importance; and if β > 1, then the missing value has
more importance. If β = 1, then the combined formula
gives a harmonic mean between missing and matching
values. The combined formula can be used to combine the
matching and missing values globally once or at each level
of the two taxonomy trees which is proposed in Section 4.

4 Generalized weighted tree similarity algorithm
This section proposes two generalized weighted tree simi-
larity algorithms such as (i) a weighted tree similarity algo-
rithm that uses generalized formula once globally called
as generalized global weighted tree similarity algorithm
(GG-W-tree similarity algorithm) and (ii) a weighted tree
similarity algorithm that uses generalized formula at each
level of two trees to preserve the structural information
between them called as generalized level-wise weighted
tree similarity algorithm (GLW-W-tree similarity algo-
rithm).

4.1 GG-W-tree similarity algorithm
This subsection explains a generalized algorithm that
combinesmatching andmissing values globally. It consists
ofMatch andMiss algorithms. TheMatch algorithm com-
putes the matching value between two taxonomy trees

Fig. 2 Three trees to illustrate limitations of the weighted tree similarity algorithm

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 6 of 12

by traversing from top to bottom and computes from
bottom to top recursively. However, Miss algorithm com-
putes missing value as average simplicity values of missing
trees between two taxonomy trees. Finally, the match-
ing and missing values are combined globally using the
generalized formula.

Algorithm 3Match(T , T ′)

match = 0, 0 < ε <= 0.5;
if Node-label(T) = Node-label(T ′) then

{Case 1, Case 3 and Case 4 in Fig. 1}
if (T & T ′ are leaf nodes) or (T is a non-leaf & T ′ is
a leaf) or (T is a leaf & T ′ is a non-leaf) then

Return 1;
else

{Case 2 in Fig. 1}
if T & T ′ are non-leaf nodes then

for each pair of identical arc labels li ∈ T and
ł′j ∈ T ′ do
match = match + (w(li) +w(l′j))/2 * Match(Ti,
T ′
j);

end for
Return (ε + (1 − ε) * (match));

end if
end if

else
Return 0;

end if

Match algorithm returns 1.0 for case 1, case 3, and case 4
in Fig. 1 if the node labels are the same. For case 2, it com-
putes the average arc weights of two identical arcs each
taken from one tree and multiplies with the Match algo-
rithm at their sub-trees recursively. It sums the matching
value at every pair of such identical arcs. Note that it gives
a small similarity as node equality (ε) to avoid zero match-
ing value because of multiplication of recursive algorithm
in case if all sub-trees matching value is zero. Match
algorithm is given in Algorithm 3.
Miss algorithm computes the missing value using sim-

plicity algorithm explained in Section 2.3. Initially, Miss
algorithm has a parameter calledmatchwhich is matching
value between two taxonomy trees. If there is no missing
value then it returns match value, otherwise the missing
value is always less thanmatch value.Miss algorithm has a
counter (count) to represent the number of missing trees.
Let the missing value be λvalue.
If the two given trees have non-leaf root nodes, then

the Miss algorithm finds identical arcs where each arc
from one tree and recursively callsMiss algorithm at their
respective sub-trees to calculate any missing value present

at their descendants. If any arc which is present in one tree
and is absent in other tree, then the missing value is cal-
culated as arc weight multiplied with the simplicity value
at its respective sub-tree. Such a pair of trees is shown
as case 2 in Fig. 1. If one tree is leaf and other tree is
non-leaf, then Miss algorithm computes simplicity value
at non-leaf node, which are shown as case 3 and case 4
in Fig. 1. Miss algorithm sums all such missing value and
the counter is updated. Finally, the algorithm returns the
average missing value (see Algorithm 4).
GG-wT-similarity algorithm computes matching and

missing values separately by using Algorithm 3 and Algo-
rithm 4. Finally, it combines the matching and missing
values using the generalized formula given in Eq. 2 and the
GG-wT-similarity algorithm is given in Algorithm 5.

Algorithm 4Miss(T , T ′ , match)

λvalue = 0, count = 0, 0 < ε <= 0.5;
if Node-label(T) = Node-label(T ′) then

{Case 2 in Fig. 1}
if T & T ′ are non-leaf nodes then

for each pair of identical arc labels li ∈ T and l′j ∈
T ′ do

Miss(Ti, T
′
j);

end for
for each arc li which is present in T and it does not
present in T ′ do

λvalue = λvalue + w(li) * λ(match, Ti);
count = count + 1;

end for
for each arc l′j which is present in T ′ and it does
not present in T do

λvalue = λvalue + w(l′j) * λ(match, T ′
j);

count = count + 1;
end for

else
{Case 3 in Fig. 1}
if T is a non-leaf & T ′ is a leaf then

λvalue = λvalue + λ(match, T);
count = count + 1;

else
{Case 4 in Fig. 1}
if T is a leaf & T ′ is a non-leaf then

λvalue = λvalue + λ(match, T|
′);

count = count + 1;
end if

end if
end if
return (λvalue/count);

else
return match;

end if

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 7 of 12

Algorithm 5 GG-wT-similarity(T , T ′ , β)

match = Match(T , T ′);
λvalue = Miss(T , T ′);
ifmatch �= 0 & λvalue �= 0 then

return ((β2+1)∗match∗λvalue
β2∗match+λvalue);

else
return match;

end if

4.2 GLW-wT-similarity algorithm
This subsection describes a generalized level-wise
weighted tree similarity algorithm (GLW-wT-similarity
algorithm) which combines matching and missing val-
ues at each level of two trees to preserve the structural
information.
This algorithm computes matching and missing infor-

mation at each level of the two taxonomy trees by travers-
ing from top to bottom and computes from bottom to
top recursively. It computes matching and average miss-
ing information at each level and combines them using
combined formula (see Eq. 2) and returns it to its previous
level matching information. Similarly, it recursively com-
putes from bottom to top and returns similarity between
two taxonomy trees at the root level.
Initially, the algorithm finds identical arcs from their

root nodes where the first arc taken form the first tree
and the second arc taken from the second tree and it goes
to bottom level recursively where there is no such identi-
cal arcs. This becomes one of the three cases such as case
1, case 3, and case 4 in Fig. 1. For case 3 and case 4, the
matching information is taken as 1.0 since two node labels
are the same andmissing information is computed at non-
leaf tree node using the simplicity algorithm and returns
the combined value to its previous level matching infor-
mation. Case 1 returns 1.0 to its previous level matching
information. Case 2 in Fig. 1 recursively combines the sum
of the matching values of the identical arcs and average
missing value at each level and returns it to its previous
level matching information. Similarly, the GLW-W-tree
similarity algorithm computes recursively from bottom
till it reaches the root nodes of the two taxonomy trees
and returns the similarity between them. The algorithm
for GLW-W-tree-similarity is described in Algorithm 6.
The following section describes the experimental results
for the proposed algorithms for various parameters and
various weights.

5 Experimental results
This section describes experimental results. A set of all
possible binary trees upto two levels are generated which
starts with a single node tree T1 and ends with a com-
plete two level binary tree T25. These generated trees are

Algorithm 6 GLW-wT-similarity(T , T ′ , β)

match = 0, λvalue = 0, 0 < ε <= 0.5;
if Node-label(T) = Node-label(T ′) then

{Case 1 in Fig. 1}
if T & T ′ are leaf nodes then

Return 1;
else

{Case 2 in Fig. 1}
if T & T ′ are non-leaf nodes then

for each pair of identical arc labels li ∈ T and
l′j ∈ T ′ do
match = match + (w(li)+w(l′j))/2 * GLW-wT-
similarity(T , T ′ ,β);

end for
match = ε + (1 − ε) * match;
for each arc li which is present in T and it does
not present in T ′ do
miss = miss + Simplicity(match, T);
count = count + 1;

end for
for each arc l′j which is present in T ′ and it does
not present in T do
miss = miss + Simplicity(match, T ′);
count = count + 1;

end for
else

match = 1.0, count = 1;
{Case 3 in Fig. 1}
if T is a non-leaf & T ′ is a leaf then
miss = miss + Simplicity(match, T)

else
{Case 4 in Fig. 1}
if T is a leaf & T ′ is a non-leaf then

miss = miss + Simplicity(match, T ′);
end if

end if
end if

end if
ifmatch �= 0 &miss �= 0 then

miss = miss/count;
return ((β2+1)∗match∗miss

β2∗match+miss);
else

return match;
end if

else
Return 0;

end if

shown in Fig. 3, and tree T7 is taken as a reference tree to
calculate the similarity with all trees in the experiments. It
is shown in a box with dotted lines in Fig. 3. In Section 5.1,

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 8 of 12

Fig. 3 Trees generated for experiments and the reference tree is represented in a box with dotted lines

arc weights of the trees are fixed as shown in Fig. 3,
experiments are done, and similarity values are plotted for
various β and depth degradation values. In Section 5.2, β
value and depth degradation values are fixed, experiments
are done, and similarity values are plotted for various arc
weights of the trees.

5.1 Generalized tree similarity for various parameter
values of the combined formula

This subsection provides experimental results for vari-
ous β values that are used to combine matching and
missing information between two trees and two depth
degradation values. Two plots are drawn for two depth

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 9 of 12

Fig. 4 GG-W-tree similarity for various β values

degradation values of 0.5 and 0.8. Each of the two
plots presents the similarity values of all trees rep-
resented on y-axis for different β values taken from
{0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} which
are represented on x-axis. There are two such results
shown in Figs. 4 and 5 of the proposed generalized tree
similarity tree algorithms, that is, GG-W-tree similarity
algorithm and GLW-W-tree similarity algorithm, respec-
tively. Some of the trees have the same matching and
missing information when compared with tree T7 which

are structurally the same and are grouped in a single
representation.
It is clear from the results that the missing information

decreases the similarity values when compared to match-
ing information using the proposed combined formula
which are controlled by β and depth degradation values.
In Fig. 4, although trees T11, T12 and trees T23, T24
are structurally different, they have same similarity values
when matching and missing information is combined
globally using GG-W-tree similarity algorithm whereas

Fig. 5 GLW-W-tree similarity for various β values

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 10 of 12

Fig. 6 Similarity values between tree T7 and the set of trees in Fig. 3 using the GG-W-tree algorithm for various weights

they have different similarity values when they use GLW-
W-tree similarity algorithms as shown in Fig. 5 since it
preserves structural information. From the results, we
have chosen β value as 0.2 and depth degradation value as
0.5.

5.2 Generalized tree similarity for various arc weights
The experimental results of the generalized tree similar-
ity algorithms for various arc weights of the trees are

given in Fig. 7. The parameter β is fixed as 0.2 and
depth degradation factor is set as 0.5. The arc weights
are assigned as (ε, 1 − ε) if the node of a tree has two
arcs, else the arc weight is 1.0. The set of ε values is
chosen as {0.01, 0.25, 0.75, 0.99}. The reference tree is T7
as given in Fig. 3. The similarity values between tree
T7 and all trees using GG-W-tree similarity algorithm
is given in Fig. 6. Similarly, the similarity between tree
T7 and all trees using GLW-W-tree similarity is given in

Fig. 7 Similarity values between tree T7 and the set of trees in Fig. 3 using the GLW-W-tree algorithm for various weights

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 11 of 12

Fig. 7. It is clear from the results that as the weight of left
arc increases from 0.01 to 0.99, then the similarity value
increases.

6 Conclusions
In this paper, limitations of the weighted tree similar-
ity algorithm have been identified and a generalized
formula to combine matching and missing information
between two taxonomy trees are proposed. We pre-
sented two generalized weighted tree algorithms. The
first algorithm is called GG-W-tree similarity algorithm
that combines matching and missing information glob-
ally, and the second algorithm is called GLW-W-tree
similarity algorithm that combines matching and miss-
ing information at each of level of the two trees in-
order to preserve structural information. Experiments
are conducted and similarity values of the proposed
two algorithms are plotted for various parameters of
the combined formula and various weights of the trees.
Thus, the proposed methods are generalized compared
to the weighted tree similarity method for matchmaking
environments.

Competing interests
I declare that I have no significant competing financial, professional, or
personal interests that might have influenced the performance or
presentation of the work described in this manuscript.

Authors’ contributions
DPK proposed the new algorithms for similarity search in taxonomy trees. He
is involved in the implementation of the code and development of the
synthetic data set and developed the plots for comparison of results. He
mainly contributed in writing several sections of the paper such as proposed
algorithms and experimental results section. VGRK is involved in writing the
introduction part. He is involved in the technical discussions and contributed
in the proposed algorithms partially. He supported in writing the literature
review and revising the manuscript. Both authors read and approved the final
manuscript.

Author details
1CSE, Priyadarshini College of Engineering and Technology, Nellore, India.
2CSE, GNITS, Hyderabad, India.

Received: 24 January 2016 Accepted: 4 May 2016

References
1. H Nottelmann, U Straccia, Information retrieval and machine learning for

probabilistic schema matching. Inf. Process. Manag. 43, 552–576 (2007)
2. VC Bhavsar, H Boley, L Yang, A weighted-tree similarity algorithm for

multi-agent systems in e-business environments. Comput. Intell. 20(4),
584–602 (2004)

3. H Boley, VC Bhavsar, D Hirtle, A Singh, Z Sun, L Yang, A match-making
system for learners and learning objects. Int. J Interactive Technol. Smart
Educ. 2(3), 171–178 (2005)

4. JA Iyer, P Bhattacharyya, Using semantic information to improve case
retrieval in case-based reasoning systems in International Conference on
the Convergence of Knowledge, Culture, Language and Information
Technologies, December 2–6, 2003, Alexandria, Egypt, 1–6

5. VN Kamat, Inductive learning with the evolving tree transformation
system, Doctoral thesis, Faculty of Computer Science. Fredericton,
Canada, University of New Brunswick (1996)

6. P Resnik, Semantic similarity in a taxonomy: an information based
measure and its application to problems of ambiguity in natural
language. J Artif. Intell. Res. 11, 95–130 (1999)

7. A Budanitsky, G Hirst, inWorkshop onWordNet and Other Lexical Resources.
Semantic distance in WordNet: an experimental, application-oriented
evaluation of five measures, vol. 2, (2001)

8. H Kozima, Computing lexical cohesion as a tool for text analysis, doctoral
thesis, computer science and information maths, University of
Electo-Comm (1994)

9. L Yang, A survey on semantic concept similarity algorithms and an
approach of concept relative-depth scaling, CS6999 Directed Studies
Course (Semantic Matching Algorithm) Report (2005)

10. Y Li, ZA Bandar, D McLean, An approach for measuring semantic similarity
between words using multiple information sources. IEEE Trans Knowl.
Data Eng. 15(4), 871–882 (2003)

11. R Rada, H Mili, E Bichnell, M Blettner, Development and application of a
metric on semantic nets. IEEE Trans. Knowl. Data Eng. 9(1), 17–30 (1989)

12. P Resnik, Using information content to evaluate semantic similarity in a
taxonomy. arXiv preprint cmp-lg/9511007, 448–453 (1995)

13. L Zhang, et al., in Computer and Information Technology (CIT), 2012 IEEE
12th International Conference on. Discovering similar user models based
on interest tree (IEEE, 2012), pp. 1046–1050

14. U Saadah, R Sarno, UL Yuhana, in The Proceedings of The 7th ICTS, Bali.
Latent semantic analysis and weighted tree similarity for semantic search
in digital library, (2013), pp. 159–164

15. G Huang, X Zhang, in E-Product E-Service and E-Entertainment (ICEEE), 2010
International Conference on. Text retrieval based on semantic relationship
(IEEE, 2010), pp. 1–4

16. J Wang, BA Shapiro, D Shasha, K Zhang, KM Curry, An algorithm for
finding the largest approximately common substructures of two trees.
IEEE Trans. Pattern Anal. Mach. Intell. 20, 889–895 (1998)

17. D Shasha, J Wang, K Zhang, Treediff: approximate tree matcher for
ordered trees (2001)

18. D Shasha, J Wang, K Zhang, Exact and approximate algorithm for
unordered tree matching. IEEE Trans. Syst. Man Cybernet. 24(4), 668–678
(1994)

19. S Lu, A tree-to-tree distance and its application to cluster analysis. IEEE
Trans. Pattern Analy. Mach. Intell. 1(2), 219–224 (1979)

20. T Liu, D Geiger, in Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on. Approximate tree matching and shape
similarity, vol. 1 (IEEE, 1999), pp. 456–462

21. RW Hamming, in Coding and information theory. Error-correcting codes,
2nd Edition (Prentice-Hall, Inc., 1986)

22. B Schindler, F Rothlauf, HJ Pesch, in Applications of Evolutionary
Computing. Evolution strategies, network random keys, and the one-max
tree problem (Springer Berlin Heidelberg, 2002), pp. 143–152

23. J Wang, H Liu, H Wang, A mapping-based tree similarity algorithm and its
application to ontology alignment. Knowl. Based Syst. 56, 97–107 (2014)

24. L Yang, M Ball, H Boley, VC Bhavsar, Weighted partonomy-taxonomy trees
with local similarity measures for semantic buyer-seller match-making.
J. Business Technol. 1(1), 42–52 (2005)

25. L Yang, BK Sarker, VC Bhavsar, H Boley, Range similarity and satisfaction
measures for buyers and sellers in e-marketplaces. J. Intell. Syst. 17(1),
247–266 (2008)

26. M Joshi, VC Bhavsar, H Boley, in Proceedings of the 11th International
Conference on Electronic Commerce ICEC 2009. A knowledge
representation model for matchmaking systems in e-marketplaces,
(2009), pp. 362–365

27. M Joshi, VC Bhavsar, H Boley, inMulti-disciplinary Trends in Artificial
Intelligence. Compromise matching in P2P e-marketplaces: concept,
algorithm and use case (Springer, 2011), pp. 384–394

28. M Joshi, VC Bhavsar, H Boley, in Proceedings of the 12th International
Conference on Electronic Commerce: Roadmap for the Future of Electronic
Business. Matchmaking in p2p e-marketplaces: soft constraints and
compromise matching (ACM, 2010), pp. 148–154

29. J Jin, et al., in High-Performance Computing in Asia-Pacific Region, 2005.
Proceedings. Eighth International Conference on. Towards a weighted-tree
similarity algorithm for RNA secondary structure comparison (IEEE, 2005),
pp. 639–644

Pramodh Krishna D and Venu Gopal Rao K EURASIP Journal on Information Security (2016) 2016:12 Page 12 of 12

30. H Kebriaei, VJ Majd, A new agentmatching scheme using an ordered fuzzy
similarity measure and game theory. Comput. Intell. 24(2), 108–121 (2008)

31. L Yang, BK Sarker, VC Bhavsar, H Boley, in 14th International Conference on
Intelligent and Adaptive Systems and Software Engineering (IASSE-2005),
Proceedings of The International Society for Computers and Their
Applications (ISCA). A weighted-tree simplicity algorithm for similarity
matching of partial product descriptions, (2005), pp. 55–60

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Weighted tree similarity algorithm (wT-similarity)
	Notation and definitions
	Weighted tree similarity algorithm
	Simplicity algorithm for missing trees

	Limitations of the weighted tree similarity algorithm
	Limitations
	A generalized measure

	Generalized weighted tree similarity algorithm
	GG-W-tree similarity algorithm
	GLW-wT-similarity algorithm

	Experimental results
	Generalized tree similarity for various parameter values of the combined formula
	Generalized tree similarity for various arc weights

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	References

