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Abstract

We present a new method for random testing of binary executables inspired by biology. In our approach, we
introduce the first fuzzer based on a mathematical model for optimal foraging. To minimize search time for possible
vulnerabilities, we generate test cases with Lévy flights in the input space. In order to dynamically adapt test generation
behavior to actual path exploration performance, we define a suitable measure for quality evaluation of test cases. This
measure takes into account previously discovered code regions and allows us to construct a feedback mechanism. By
controlling diffusivity of the test case generating Lévy processes with evaluation feedback from dynamic
instrumentation, we are able to define a fully self-adaptive fuzzing algorithm. We aggregate multiple instances of such
Lévy flights to fuzzing swarms which reveal flexible, robust, decentralized, and self-organized behavior.
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1 Introduction
As software ever increases in size and complexity, we face
the significant challenge to validate the systems surround-
ing us. Penetration testing of software has come a long
way from its origins and nowadays shows an extensive
diversity of possible strategies. All of them have the com-
mon aim to achieve maximal code coverage by generating
suitable program inputs, also called test cases. Possible
approaches range from dynamic symbolic [1, 2] and con-
colic [3–5] execution to more or less random testing using
generational, mutational, black-box, or white-box fuzzers
[6, 7]. Within the latter domain of random test genera-
tion, current strategies for input generation basically rely
on heuristics and sophisticated guessing. It is still an open
question how to optimally generate inputs that trigger a
maximum number of bugs in a finite amount of time.
In the course of researching new effective search strate-

gies, we find similar problems in biology, particularly in
the field of optimal foraging. A variety of biological sys-
tems let us observe optimal strategies for finding energy
sources by simultaneously avoiding predators. When we
identify sources of food with possible vulnerabilities in
binary executables and predators with the overhead of
execution runtime, we are inspired to adapt mathematical
models of optimal foraging to test case generation. This
approach enables us to take stochastic models of optimal
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foraging as a basis for input mutation. In particular, we
rely on Lévy flights to search for bug triggering test cases
in input space.
Before summarizing our contributions, we first give

some short background on fuzzing, optimal foraging, and
the Lévy flight hypothesis.

1.1 Fuzzing
There exists a substantial diversity of test case gener-
ation strategies for random testing binaries. All these
approaches have in common to a greater or lesser extent
the random generation of test cases with the aim of
driving the targeted program to an unexpected and pos-
sibly exploitable state. The most significant advantage of
fuzzing is its ease of use. Most executable binaries that
process any input data are suitable targets for random
test generation, and effective fuzzers are implemented in
a short time.

1.2 Optimal foraging
Observing biological systems has led to speculation that
there might be simple laws of motion for animals search-
ing for sources of energy in the face of predators. Regard-
less of whether we look at bumblebees [8], fish and
hunting marine predators in the sea [9, 10], gray seals
[11], spider monkeys [12], the flight search patterns of
albatrosses [13], the wandering of reindeer [14], the reac-
tion pathways of DNA-binding proteins [15], or the neu-
tralization of pathogens by white blood cells [16], we can
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discover emerging movement patterns all those examples
have in common.Mathematically modeling such common
patterns is an active field of research in biology and is
more generally referred to asmovement ecology. While the
physics of foraging [17] provides us several possible mod-
els, our choice is not guided by accuracy with respect to
the biological process but byminimization of software bug
search time. This leads us to the special class of stochas-
tic processes called Lévy flights which we discuss in more
detail in Section 3.

1.3 Lévy flight hypothesis
Within the variety of models for optimal foraging, Lévy
flights have several characteristic properties that show
promise for software testing. In particular, the Lévy flight
hypothesis accentuates the most significant property of
these kinds of stochastic processes for our purposes. It
states that Lévy flights minimize search time when forag-
ing sources of food that are sparsely and randomly dis-
tributed, resting, and refillable. These assumptions match
the properties of bugs in software (with the interpretation
that refillable translates to the fact that software bugs stay
until fixed). In addition to the mathematical Lévy flight
hypothesis, the Lévy flight foraging hypothesis in theoret-
ical biology states that these processes actually model real
foraging behavior in certain biological systems due to nat-
ural selection. The Lévy flight hypothesis constitutes the
major connection link between optimal foraging theory
and random software testing.

1.4 Swarm behavior
While moving patterns of foraging animals inspire us
to define the behavior of a single fuzzer, we are fur-
ther guided by biology when accumulatingmultiple fuzzer
instances to a parallelized testing framework. Again, we
take a look at nature to discover a whole branch of sci-
ence that researches swarm behavior [18]. For example,
the ants of a colony collectively find the shortest path to
a food source. Based on simple rules for modeling natural
swarm behavior, we construct a fuzzing swarm that mim-
ics colony clustering observed in biology. Our algorithm
navigates the fuzzing swarm without a central control and
provides self-organization of the fuzzers as they flexibly
adapt to the binary structure under test.
In this paper, we propose a novel method for random

software testing based on the theory of optimal foraging.
In summary, we make the following contributions:

• We introduce a novel fuzzing method based on Lévy
flights in the input space in order to maximize
coverage of execution paths.

• We define a suitable measure for quality evaluation of
test cases in input space with respect to previously
explored code regions.

• In order to control diffusivity of the test generation
processes, we define a feedback mechanism
connecting current path exploration performance to
the test generation module.

• We enable self-adaptive fuzzing behavior by adjusting
the Lévy flight parameters according to feedback from
dynamic instrumentation of the target executable.

• We aggregate multiple instances of such Lévy flights
to fuzzing swarms which reveal flexible, robust,
decentralized, and self-organized behavior.

• We implement the presented algorithm to show the
feasibility of our approach.

The remainder of this paper is organized as follows.
In Section 2, we discuss related work. In Section 3, we
present necessary background on Lévy flights and show
how to construct them in input space. We define a qual-
ity measure for generated test cases in Section 4, intro-
duce our self-adapting algorithm for individual fuzzers
in Section 5, and construct a swarm of multiple fuzzing
instances in Section 6. Next, we give details regarding
our implementation in Section 7 and discuss properties,
possible modifications, and expansions of the proposed
algorithm in Section 8. The paper concludes with a short
outlook in Section 9.

2 Related work
This paper is an extension of Hunting Bugs with Lévy
Flight Foraging [19]. The prevalent method used for
binary vulnerability detection is random test generation,
also called fuzzing. Here, inputs are randomly gener-
ated and injected into the target program with the aim
to gain maximal code coverage in the execution graph
and drive the program to an unexpected and exploitable
state. There is a rich diversity of fuzzing tools avail-
able, each focusing on specialized approaches. Multi-
ple taxonomies for random test generation techniques
have been proposed, and the most common is classi-
fication into mutational or generational fuzzing. Muta-
tion fuzzers are unaware of the input format and mutate
the whole range of input variables blindly. In contrast,
generation fuzzers take the input format into account
and generate inputs according to the format defini-
tion. For example, generation fuzzers can be aware of
the file formats accepted by a program under test or
the network protocol definition processed by a network
stack implementation. We can further classify random
test generation methods into black-box or white-box
fuzzing, depending on the awareness of execution traces
of generated inputs. We refer to [6, 7] for a comprehensive
account.
For definition of our quality measure for test cases, we

built upon executable code coverage strategies. The idea
to generate program inputs that maximize execution path
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coverage in order to trigger vulnerabilities has been dis-
cussed in the field of test case prioritization some time
ago, see e.g., [20, 21] for a comparison of coverage-based
techniques. Rebert et al. [22] discuss and compare meth-
ods to gain optimal seed selection with respect to fuzzing,
and their findings support our decision to select code cov-
erage for evaluating the quality of test cases. The work
of Cha et al. [23] is distantly related to a substep of our
approach in the sense that they apply dynamic instrumen-
tation to initially set the mutation ratio. However, they use
completely different methods based on symbolic execu-
tion. Since symbolic preprocessing is very cost-intensive,
they further compute the mutation ratio only once per
test.
Lévy flights have been studied extensively in mathemat-

ics, and we refer to Zaburdaev et al. [24] and the references
therein for a comprehensive introduction to this field.
Very recently, Chupeau et al. [25] connected Lévy flights
to optimal search strategies and minimization of cover
times.

3 Lévy flights in input space
In this section, we give the necessary background on Lévy
flights and motivate their application. With this back-
ground, we then define Lévy flights in input space.

3.1 Lévy flights
Lévy flights are basically random walks in which step
lengths exhibit power law tails. We aim for a short
and illustrative presentation of the topic and refer to
Zaburdaev et al. [24] for a comprehensive introduction.
Pictorially if a particle moves stepwise in space while ran-
domly choosing an arbitrary new direction after each step,
it describes a Brownian motion. If in addition the step
lengths of this particle vary after each step and are dis-
tributed according to a certain power law, it describes a
Lévy flight.
Formally, Lévy processes comprise a special class of

Markovian stochastic processes, i.e., collections of ran-
dom variables

(Lt), t ∈ T (1)

defined on a sample space � of a probability space
(�,F ,P), mapping into a measurable space (�′,F ′), and
indexed by a totally ordered set T. In our case, �′ refers to
the discrete input space of the program and the index time
T models the discrete iterations of test case generation, so
we can assume T = N. The process (Lt)t∈T is said to have
independent increments if the differences

Lt2 − Lt1 , Lt3 − Lt2 , ..., Ltn − Ltn−1 (2)

are independent for all choices of t1 < t2 < ... < tn ∈ T .
The process (Lt), t ∈ T is said to be stationary, if

∀t1, t2 ∈ T , h > 0 : Lt1+h − Lt1 ∼ Lt2+h − Lt2 , (3)

i.e., increments for equal time intervals are equally dis-
tributed. A Lévy process is then formally defined to be
a stochastic process having independent and stationary
increments. The additional property

L0 = 0 a.s. (4)

(i.e., almost surely) is sometimes included in the defini-
tion, but our proposed algorithm includes starting points
other than the origin.
To construct a Lévy process, (Ln)n∈N we simply sum up

independent and identically distributed random variables
(Zn)n∈N, i.e.,

Ln :=
n∑

i=1
Zi. (5)

The process (Ln)n∈N is Markovian in the sense that

P(Ln = xn|Ln−1 = xn−1, ..., L0 = xo) (6)
= P(Ln = xn|Ln−1 = xn−1), (7)

which simplifies a practical implementation. If the distri-
bution of step lengths in a Lévy process is heavy-tailed,
i.e., if the probability is not exponentially bounded, we call
the process a Lévy flight. Such processes generalize Brow-
nian motion in that their flight lengths l are distributed
according to the power law

p(l) ∼ |l|−1−α , (8)

where 0 < α < 2. They exhibit infinite variance

< l2 >= ∞ (9)

which practically results in sometimes large jumps dur-
ing search process. In fact, the ability to drive a particle
very long distances within a single step gives Lévy flights
their name. While Brownian motion is a suitable search
strategy for densely distributed targets, Lévy flights are
more efficient than Brownian motion in detecting widely
scattered (software) bugs. Although there is much to say
about the theoretical aspects of this class of stochastic
processes, we basically refer to the power law in Eq. (8)
in the following. Smaller values of α yield a heavier tail
(resulting in frequent long flights and super-diffusion),
whereas higher values of α reveal a distribution with prob-
ability mass around zero (resulting in frequent small steps
and sub-diffusion). In Section 5, we adapt α according to
feedback information from dynamic instrumentation of
the targeted binary.
As indicated in Section 1, Lévy flights are directly con-

nected to the minimal time it takes to cover a given search
domain. We refer to [25] for recent results regarding
minimization of the mean search time for single targets.
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3.2 Input space flights
Next, we construct Lévy flights in the input space of
binary executables under test. Therefore, assume the
input to be a bit string of length N. If we simply
wanted an optimal search through the input space with-
out any boundary conditions, we would construct a one-
dimensional Lévy flight in the linear space {0, ..., 2N }.
However, our aim is not input space coverage but execu-
tion code coverage of the binary under test. In this section,
we construct a stochastic process in input space with
the properties we need for the main fuzzing algorithm
presented in Section 5.
First, we divide the input into n segments of sizem = N

n
(assuming without loss of generality that N is a multi-
ple of n). We then define two Lévy processes, one in the
space of offsets O = {1, ..., n} and one in the space of
segment values S = {1, ..., 2m}. With underlying proba-
bility spaces (�1,F1,P1) and (�2,F2,P2), we define the
one-dimensional Lévy flights

L1t : �1 → O (10)

L2t : �2 → S (11)
with index space t ∈ N and corresponding power law
distribution of flight lengths l

pj(l) ∼ |l|−1−αi , j = 1, 2, (12)

where 0 < αi < 2. While (L1t )t∈N performs a Lévy flight in
the offset parameter space, (L2t )t∈N performs Lévy flights
within the segment space indicated by the offset. Regard-
ing the initial starting point (L10, L20), we assume a given
seed input. We choose an arbitrary initial offset L10 ∈ O
and set the initial value of L20 according to the segment
value (with offset L10) of the seed input.
By setting different values of α, we can control the dif-

fusivity of the stochastic processes (L1t )t∈N and (L2t )t∈N.
If we find a combination of offset and segment values
of high quality, the fuzzer should automatically explore
nearby test cases, which is realized by higher values of
0 < αi < 2. Similarly, if the currently explored region
within input space reveals low quality test cases, the fuzzer
should automatically adapt to widen its search pattern by
decreasing α. Therefore, we first have to define a quality
measure for test cases.

4 Quality evaluation of test cases
In this section, we define a quality measure for generated
test cases. We aim for maximal possible code coverage in
a finite amount of time, so we evaluate a single input by its
ability to reach previously undiscovered execution paths.
In other words, if we generate an input that drives the pro-
gram under test to a new execution path, this input gets
a high-quality rating. Therefore, we have to define a simi-
larity measure for execution traces. We will then use this

measure in Section 5 as feedback to dynamically adapt
diffusivity of the test case generation process.
The field of test case prioritization provides effective

methods for coverage-based rating (see [20, 21] for a
comparison). We adapt the method of prioritizing test
cases by additional basic block coverage. As introduced in
Section 3, we assume inputs for the program under test to
be bit strings of size N and denote the space of all possi-
ble inputs as I = {0, ..., 2N }. Our challenge can then be
formulated as follows. Given a subset of already generated
input values I ′ ⊂ I , how do we measure the quality of
a new input x0 ∈ I with respect to maximal code cover-
age? For a given x0 ∈ I , let cx0 denote the execution path
the program takes for processing x0. Intuitively, we would
assign a high-quality rating to the new input x0 if it drives
the targeted program to a previously undiscovered execu-
tion path, i.e., if cx0 differs significantly from all previously
explored execution paths {cx|x ∈ I ′}. Tomeasure this path
difference, we take the amount of newly discovered basic
blocks into account. Here, we refer to a basic block as a
sequence of machine instructions without branch instruc-
tions between block entry and block exit. Let B(cx) denote
the set of basic blocks of execution path cx. The set of
newly discovered basic blocks while processing a new test
case x0 given already executed test cases I ′ ⊂ I is then

B(cx0) \
(

⋃

x∈I′
B(cx)

)
. (13)

We define the number E(x0, I ′) of these newly discovered
blocks as

E(x0, I ′) :=
∣∣∣∣∣B(cx0) \

(
⋃

x∈I′
B(cx)

)∣∣∣∣∣ , (14)

where |A| denotes the number of elements within a set A.
The number E(x0, I ′) indicates the number of newly dis-
covered basic blocks when processing x0 with respect to
the already known basic blocks executed by the test cases
within I ′. Intuitively, E(x0, I ′) gives us a quality measure
for input x0 in terms of maximization of basic block cover-
age. In order to construct a feedback mechanism, we will
use a slightly generalized version of this measure to con-
trol diffusivity of the input generating Lévy processes in
our fuzzing algorithm in Section 5.

5 Fuzzing algorithm
In this section, we present the overall fuzzing algorithm.
Our approach uses stochastic processes (i.e., Lévy flights
as introduced in Section 3) in the input space to generate
test cases. To steer the diffusivity of test case generation,
we provide feedback regarding the quality of test cases
(as defined in Section 4) to the test generation process in
order to yield self-adaptive fuzzing.
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We first prepend an example regarding the interplay
between input space coverage and execution path cover-
age to motivate our fuzzing algorithm. Consider a pro-
gram which processes inputs from an input space I . Our
aim is to generate a subset I ′ ⊂ I of test cases (in
finite amount of time) that yields maximal possible execu-
tion path coverage when processed by the target program.
Further assume the program to reveal deep execution
paths (covering long sequences of basic blocks) only for
3% of the inputs I , i.e., 97% of inputs are inappropriate
test cases for fuzzing. Since we initially cannot predict
which of the test cases reveals high quality (determined by
e.g., the execution path length or the number of different
executed basic blocks), one strategy to reach good code
coverage would be black-box fuzzing, i.e., randomly gen-
erating test cases within I hoping that we eventually hit
some of the 3% high quality inputs. We could realize such
an optimal search through input space with highly diffu-
sive stochastic processes, i.e., Lévy flights as presented in
Section 3.
As mentioned above, the Lévy flight hypotheses pre-

dicts an effective optimal search through input space due
to their diffusivity properties. On the one hand, this dif-
fusivity guarantees us reaching the 3% with very high
probability. On the other hand, once we have reached
input regions within the 3% of high quality test cases, the
same diffusivity also guarantees us that we will leave them
very efficiently. This is why we need to adapt the diffu-
sivity of the stochastic process according to the quality of
the currently generated test cases. If the currently gener-
ated test cases reveal high path coverage, the Lévy flight
should be localized in the sense that it reduces its diffu-
sivity to explore nearby inputs. In turn, if the currently
generated test cases reveal only little coverage, diffusiv-
ity should increase in order to widen the search for more
suitable input regions. By instrumenting the binary under
test and applying the quality evaluation of test cases intro-
duced in Section 4, we are able to feedback coverage
information of currently explored input regions to the test
case generation algorithm. In the following, we construct
a self-adaptive fuzzing strategy that automatically expands
its search when reaching low-quality input regions and
focuses exploration when having the feedback of good
code coverage.

5.1 Initial seed
We start with an initial non-empty set of input seeds
X0 ⊂ I . As described in Section 3, we assume the ele-
ments x ∈ X0 to be bit strings of length N and divide each
of them into n segments of size m = N

n (assuming with-
out loss of generality that N is a multiple of n). Practically,
the input seeds X0 can be arbitrary files provided manu-
ally by the tester; they may not even be valid with regard
to the input format of the program under test. We further

set two initial diffusive parameters 0 < α1,α2 < 2 and an
initial offset q0 ∈ {1, . . . , n}.

5.2 Test case generation
The test case generation step takes as input a test case x0,
diffusion parameters α1 and α2, an offset number q0 ∈
{1, . . . , n}, and a natural number kgen ∈ N of maximal test
cases to be generated. It outputs a set Xgen of kgen new test
cases Xgen ∈ I .
As introduced in Section 3, we refer to the offset space

as O = {1, . . . , n} and to the segment space as S =
{1, . . . , 2m}. We denote with x0(q0) the segment value of
input x0 at offset q0. For the Lévy flights

L1t : �1 → O (15)

in the offsetsO and

L2t : �2 → S (16)

in S with flight lengths l distributed according to the
power law

pj(l) ∼ |l|−1−αj , j = 1, 2, (17)

we set the initial conditions

L10 = q0 and (18)
L20 = x0(q0), (19)

respectively. Let R(x0, q0, s0) denote the bit string gener-
ated by replacing the value x0(q0) of bit string x0 at offset
q0 by a new value s0. Both stochastic processes (L1t )t∈N and
(L2t )t∈N are then simulated for kgen steps to generate the
kgen new test cases

x1 := R
(
x0, L10, L

2
1
)

(20)

x2 := R
(
x1, L11, L

2
2
)

. . .
(21)

xt+1 := R
(
xt , L1t , L2t+1

)

. . .
(22)

xkgen := R
(
xkgen−1, L1kgen−1, L

2
kgen

)
. (23)

For simplicity of notation in this definition, we identify
the values Ljt with their respective binary representations
(as bit string). In words, we start with the initial test case
x0 and replace its segment content at offset L10 = q0 with
the new value L21, which is the value in segment space
S = {1, . . . , 2m} that we get when taking a first random
step with the Lévy flight (L2t )t∈N. This yields x1. We get
the next test case x2 by considering the just generated x1,
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setting the offset according to (L2t )t∈N, and then replac-
ing the content of the segment indicated by this offset by
a new segment value chosen by (L2t )t∈N. We proceed with
this algorithm until the set

Xgen := {x1, . . . , xkgen} (24)

of kgen new test cases is generated.

5.3 Quality evaluation
The quality evaluation step takes as input two sets of test
cases Xgen, I ′ ⊂ I and outputs a quality rating Ẽ(Xgen, I ′)
of Xgen with respect to I ′. We already defined the number
E(x0, I ′) of newly discovered basic blocks for a single test
case x0 with respect to a given subset I ′ ⊂ I in Eq. (14).
To generalize this definition to a quality rating Ẽ(Xgen, I ′)
of a set of test cases Xgen (with respect to I ′), we define
the mean

Ẽ(Xgen, I ′) := |Xgen|−1
∑

x∈Xgen

E(x, I ′). (25)

5.4 Adaptation of diffusivity
The diffusivity adaptation step takes as input a quality
rating Ẽ(Xgen, I ′) ∈ N, two parameters b1, b2 ∈ R

+
(controlling the switching behavior from sub-diffusion to
super-diffusion) and outputs two adapted parameters 0 <

α1,α2 < 2, which according to the power law (17) regulate
the diffusivity of the Lévy flights (L1t )t∈N and (L2t )t∈N.
Our aim (as motivated at the beginning of this section)

is to adapt the diffusion parameters in such a way that the
algorithm automatically focuses its search (by decreasing
diffusivity of the generating Lévy flights) when generat-
ing high-quality (i.e., high coverage) test cases and in turn
automatically widens its search (by increasing diffusivity)
in the case of low-quality (i.e., low coverage) test cases. As
discussed in Section 3, we can control diffusivity by setting
suitable values of α1 and α2. Smaller diffusivity param-
eters result in frequent long flights and super-diffusion,
whereas higher parameters reveal frequent small steps
and sub-diffusion. To achieve this, we select a monotoni-
cally increasing function f : R → (0, 2) with f (0) ≤ ε (for
ε > 0 sufficiently small) and limt→∞ f (t) = 2. Any such
function will provide self adaptation of diffusivity of the
Lévy flights, and we simply choose two functions

fi(t) := 2
1 + ebi−t , i = 1, 2, (26)

where bi ∈ R
+ are fixed parameters that determine at

which point within the quality rating spectrum (i.e., at
which mean number of newly discovered basic blocks) the
search behavior of (L1t )t∈N and (L2t )t∈N switches from sub-
diffusion to super-diffusion. With this function, we adapt
diffusivity to

αi = f
(
Ẽ(Xgen, I ′)

)
, i = 1, 2. (27)

The next iteration of test case generation is then executed
with adapted Lévy flights.

5.5 Test case update
This step takes as input two sets of test cases Xold,Xgen ⊂
I and outputs an updated set of test cases Xnew. Dur-
ing the fuzzing process, we generate a steady stream of
new test cases which we directly evaluate with respect
to the set of previously generated inputs (as discussed
in the quality evaluation step). However, if we archive
every single test case and for each generation step evalu-
ate the kgen currently generated new test cases against the
whole history of previously generated test cases, fuzzing
speed decays constantly with increasing duration of the
fuzzing campaign. Therefore, we define an upper bound
kmax ∈ N of total test cases that we keep for quality evalu-
ation of new test cases. Small values of kmax may cause the
Lévy flights (L1t )t∈N and (L2t )t∈N to revisit already explored
input regions without being adapted (by decreasing the
parameters αi) to perform super-diffusion and widen their
search behavior. However, this causes no problem due to
the Lévy flight hypothesis (discussed in Section 1).
The update of Xold with Xgen simply follows a first in,

first out strategy. Initially if |Xold| + |Xnew| < kmax, we
append all newly generated test cases so that Xnew =
Xold ∪ Xgen. Otherwise, we first delete the oldest kold
entries in Xold, where

kold = |Xold| + |Xnew| − kmax, (28)

and then take the union.

5.6 Joining the pieces
Now that we have presented all individual parts, we can
combine them. The overall fuzzing algorithm is depicted
in Fig. 1.
The initial seed generation step outputs a non-empty

set of test cases X0 ⊂ I , two diffusivity parameters α1
and α2, and an initial offset q0. The inputs X0 are added
to the list of test cases Xall. Then, the fuzzer enters the
loop of test case generation, quality evaluation, adapta-
tion of diffusivity, and test case update. The first step
within the loop (referred to as Last(Xall)) sets q0 to the last
reached offset position of (L1t )t∈N. In the first invocation
of Last(Xall)), this is simply the already given seed off-
set, in all subsequent invocations q0 is updated to the last
state of (L1t )t∈N. The Last() function also selects the most
recently added test case x0 in Xall, which gives the initial
condition for (L2t )t∈N in the generation step. In our imple-
mentation, we realize the Last() function by retaining
the reached states of both processes (L1t )t∈N and (L2t )t∈N
between simulations.
Starting at L10 = q0 and L20 = x0(q0), the Lévy flights

(L1t )t∈N and (L2t )t∈N generate the set of new inputs Xgen by
diffusing through input space with diffusivity α1 and α2,
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Fig. 1 Individual fuzzing algorithm. After initial seed generation, the
fuzzer enters the loop of test case generation, quality evaluation,
adaptation of diffusivity, and test case update

respectively. The quality of Xgen is then evaluated against
the previous test cases in Xall. Depending on the qual-
ity rating outcome, the diffusivity of (L1t )t∈N and (L2t )t∈N
is then adapted correspondingly by updating α1 and α2
according to the sigmoid functions fi in Eqs. (26). Then
the current list of test cases Xall is updated with the just
generated set Xgen and the fuzzer continues to loop.
Regarding complexity of the fuzzing algorithm we note

that all of the individual parts are processed efficiently in
the sense that their time complexity is bound by a con-
stant. Especially the evaluation step Eval() is designed to
scale: in the first iterations of the loop, the cost of evaluat-
ingXgen againstXall is bound byO(|Xall|2). To counter this
growth, we defined an upper bound kmax ∈ N for |Xall| in
the test case update step above.

6 Lévy flight swarms
Now that we have constructed an individual fuzzing
process, we can aggregate multiple instances of such
processes to fuzzing swarms. Each individual basically
performs the search algorithm described in Section 5, but
receives additional information from its neighbors and
adapts accordingly. Adaptation rules are inspired by social
insect colonies [18] and provide a flexible, robust, decen-
tralized, and self-organized swarm behavior as described
in Section 1.
With the probability spaces (�i,Fi,Pi) (i = 1, 2) as

defined in Section 3, let

F1 ⊗ F2 = σ(F1 × F2) (29)

denote the σ -algebra generated by the Cartesian product
F1 × F2, i.e., the smallest σ -algebra which contains the
sets in F1 × F2. The flight of an individual fuzzer

(Ft)t∈N := (
L1t , L2t

)
t∈N (30)

is formally defined on the product space

(�1 × �2,F1 ⊗ F2,P1 × P2), (31)

where P1 × P2 denotes the corresponding product mea-
sure. We can then define a swarm S of d individual
flights

S := {
Fi, | i = 1, . . . , d

}
, (32)

each of which performs the loop of test case generation,
quality evaluation, adaptation of diffusivity, and test case
update as described in Section 5. For each loop iteration,
the individuals Fi of the swarm S generate test cases

Xi
gen :=

{
xi1, . . . , x

i
kgen

}
, (33)

and each individual maintains its own version of aggre-
gated test cases Xi

all.
To perform collective fuzzing, there are several possi-

bilities for the individuals Fi of the swarm S to exchange
information. One strategy would be to define a shared set
of already generated test cases

⋃
i Xi

all which could be seen
as a global shared memory of already generated test cases.
To keep the cost of each evaluation step Eval() low, we
defined an upper bound kmax ∈ N for |Xi

all| in Section 5.
If all swarm individuals add their generated test cases to
the global shared memory, this would result in a high cost
for each individual to evaluate their newly generated test
cases Xi

gen against
⋃

i Xi
all, since the complexity of Eval() is

bound byO(| ⋃i Xi
all|2).

Therefore, we explore another strategy to share infor-
mation between swarm individuals. Intuitively, after a
fixed amount of search time, each Fi of the swarm S
receives the actual quality evaluation Ẽ of its neighbors
and jumps to the one neighbor which is currently search-
ing the most promising input area. If an individual Fλ ∈ S
is searching an input area of highest quality Ẽλ test cases
among its nearby swarm individuals, all neighbors with
lower values of Ẽλ jump to the current position of Fλ in
input space. We will formalize this idea in the follow-
ing, where the index λ refers to local maxima of test case
quality Ẽ.
We first need a metric in input space in order to con-

sider neighborhoods of swarm individuals. As a natural
metric in the space of all possible inputs I = {0, . . . , 2N },
we choose the Hamming distance δ: two bit strings x =
(x1, . . . , xN ) and x′ = (x′

1, . . . , x′
N ) of size N then have

distance

δ(x, x′) :=
∣∣∣
{
j ∈ 1, . . . ,N | xj �= x′

j

}∣∣∣ . (34)
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We can then simply measure the distance δS
(
Fi
t , F

j
t

)
of

two individuals

Fi = (
L1,i, L2,i

) ∈ S (35)
Fj = (

L1,j, L2,j
) ∈ S (36)

at time t ∈ N with

δS
(
Fi
t , F

j
t

)
:= δ

(
xit , x

j
t

)
, (37)

where

xit = R
(
xit−1, L

1,i
t−1, L

2,i
t

)
(38)

xjt = R
(
xjt−1, L

1,i
t−1, L

2,i
t

)
(39)

are defined as in Eq. (22). In words, the distance δS
(
Fi
t , F

j
t

)

of two swarm individuals Fi, Fj ∈ S at a certain time t ∈
N is the Hamming distance of the, respectively, two test
cases generated at time t.
With this metric, we could proceed with considering the

R-neighborhood

UR(F0) := {F ∈ S | δS(F0, F) < R} (40)

of a swarm individual F0 ∈ S for an arbitrary R ∈ N.
However, this definition of neighborhood would result in
high processing costs for large swarms: each individual
must calculate the distances to all other individuals of the
swarm before jumping to the position of the neighbor
individual which generated test cases of highest quality
Ẽλ. Therefore, we introduce a more lightweight method of
calculating neighborhoods that scales to large swarms.We
periodically divide the whole swarm S into k clusters using
a k-means clustering algorithm to yield the disjoint parti-
tion S = ⋃̇

kCk . Each individual Fi ∈ Cj then only takes
into account the test case quality Ẽ of individuals within
the same cluster Cj before relocation.
The overall swarm fuzzing algorithm is depicted in

Fig. 2. The first part initializes the d swarm individuals
Fi (i = 1, ..., d). Each of the d initializations in the first
for loop basically corresponds to the single fuzzer setup
described in Section 5, with the minor formal difference
that the Init() function randomly selects d inputs xi0 ∈
Xi
0 ⊂ I (i = 1, ..., d) among the seed input sets to fix the

starting points of the Fi.
The algorithm then enters the main do-while loop,

which consists of three parts: fuzzing, clustering, and relo-
cation. First, all Fi (i = 1, ..., d) start fuzzing the binary
performing test case generation, quality evaluation, adap-
tation of diffusivity, and test case update as described in
Section 5.
Second, the Cluster() function divides the swarm S into

k clusters Cj (j = 1, . . . , k) as described above. We refer
to a single cluster as the neighborhood of the swarm indi-
viduals belonging to this cluster. Swarm individuals Fi

mutating on nearby inputs (measured with the Hamming

Fig. 2 Swarm fuzzing algorithm. The swarm of fuzzers enters the loop
of individual fuzzing, clustering with k-means, and relocation of
individuals to positions of highest test case quality within respective
clusters

metric) are assigned to the same cluster, whereas distant
populations share different neighborhoods.
Third, all swarm individuals Fi within the same neigh-

borhood Cj are relocated to the most promising nearby
search position. For each cluster Cj (j = 1, . . . , k) the
Relocate() function compares the current test case qual-
ity Ẽi of all Fi within the same neighborhood. Without
loss of generality there is one swarm individual Fj

λ ∈ Cj
in each neighborhood Cj with maximal quality evaluation
Ẽjλ (in the case of multiple neighbors having the same Ẽ
we simply could choose one of them randomly). Then,
the Relocate() function resets the initial positions of all
Fi ∈ Cj to

L1,i0 ← qλ and (41)

L2,i0 ← xλ(qλ), (42)

where

L1,λ0 = qλ and (43)

L2,λ0 = xλ(qλ) (44)

are the Lévy flight positions of the neighbor individual

Fj
λ = (

L1,λ, L2,λ
) ∈ Cj (45)

with currently best test case quality evaluation Ẽjλ among
neighbors in Cj, (j = 1, . . . , k).
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7 Implementation
To show the feasibility of our approach, we implemented
a prototype for the proposed self-adaptive fuzzing algo-
rithm (as depicted in Fig. 1). Our implementation is based
on Intel’s dynamic instrumentation tool Pin [26] to trace
the reached basic blocks of a generated test case. In
order to calculate the number E(x0, I ′) of newly discov-
ered basic blocks executed by a test case x0 as defined in
Eq. (14), we switch off Address Space Layout Randomiza-
tion (ASLR) during testing. For developing exploits based
on a malicious input x0 ASLR should naturally be enabled
again.
Initially, we simulated the Lévy flights in the statisti-

cal computing language R [27] but then changed to a
custom sampling method purely written in Python. We
construct Lévy flights by summing up independent and
identically distributed random variables as indicated in
Eq. (5). Each addend is distributed according to a power
law as defined in Eq. (12). We realize this by applying
the inverse transform sampling method, also referred to
as Smirnov transform. The Python script further performs
evaluation of the current path exploration performance
by direct comparison of executed basic block addresses
received from dynamic instrumentation.
We implemented fuzzing swarms by parallel execu-

tion of multiple individual fuzzers which are clustered
and relocated according to the algorithm described in
Section 6. For clustering, we apply the Lloyd k-means
algorithm.
In our implementation, we omit the first step Last(Xall)

within the loop and instead always keep the last reached
positions of the processes (Lit)t∈N (i = 1, 2) between sim-
ulations. This is due to the construction of new test cases
in Eqs. (20)-(23) so that the last test case within Xall is
simply the most recently generated xkgen which will be
used as starting position within the subsequent loop iter-
ation. Therefore it suffices to stop the Lévy flights after
kgen steps, save their current position, and proceed with
adapted diffusivity parameters in the subsequent invoca-
tion of the Gen() function.

8 Discussion
In this section, we discuss properties, possible modifica-
tions, and expansions of our proposed fuzzing algorithm.
As demonstrated in Section 5, our algorithm is self-

adaptive in the sense that it automatically focuses its
search when reaching high quality regions in input space
and widens exploration in case of low-quality input
regions. One possible pitfall of such a self-adaptive prop-
erty is the occurrence of attracting regions: if the Lévy
flights (Lit)t∈N (i = 1, 2) enter regions of high quality and
get the response from the quality evaluation step to focus
their search (by decreasing their diffusivity), an improper
quality rating mechanism might cause the Lévy flights to

stay there forever. However, our evaluation method (as
defined in Section 4) avoids this by favoring test cases
that lead the target binary to execute undiscovered basic
blocks and in turn devaluates inputs that lead to already
known execution paths. Therefore, if the test case gener-
ation module gets feedback that it is currently exploring
a region of high quality it focuses its search as long
as new execution paths are detected. As soon as explo-
ration of new execution paths stagnates, the feedback
from the evaluation module switches to a low rating. Such
a negative feedback again increases diffusivity according
to Eqs. (26) and (27), which again causes the processes
(Lit)t∈N (i = 1, 2) to diffuse into other regions of the input
space.
Our swarm algorithm for multiple individual fuzzers in

Section 6 is designed to be flexible, robust, decentralized,
and self-organized. The fuzzing swarm is flexible in the
sense that it adapts to perturbations caused by the nature
of Lévy flights and the targeted binary: if an individ-
ual fuzzer enters super-diffusion and performs frequent
large steps, it simply gets assigned to a new neighbor-
hood in the next clustering step. The swarm is robust
in the sense that it can deal with loss easily: if an indi-
vidual fuzzer gets stuck because the target crashed, the
swarm algorithm simply omits this individual in the next
clustering step. While clustering and relocation is real-
ized by a central component, all individual fuzzers are
independent stochastic processes Fi (i = 1, . . . , d) which
evolve decentralized. Finally, paths to bugs in the target
emerge self-organized during the fuzzing process and are
not predefined in any way.
One main modification of our algorithm (for individual

fuzzers) would be interchanging the aim of maximizing
code coverage with an adequate objective. In Section 4, we
defined a quality measure for generated test cases based
on the number of new basic blocks we reach with those
inputs. Although this is the most common strategy when
searching for bugs in a target program of unknown struc-
ture, we could apply other objectives. For example, we
could aim for triggering certain data flow relationships,
executing preferred regions of code, or reach a predefined
class of statements within the code. Our fuzzing algorithm
is modular and flexible in that it allows to interchange the
quality measure according to different testing objectives.
More examples of such testing objectives are discussed in
the field of test case prioritization (e.g., in [20, 21]).

9 Conclusions
Inspired by moving patterns of foraging animals, we
introduce the first self-adaptive fuzzer based on Lévy
flights. Just like search patterns in biology have evolved
to optimal foraging strategies due to natural selection,
so have evolved mathematical models to describe those
patterns. Lévy flights are emerging as successful models
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for describing optimal search behavior, which leads us to
their application of hunting bugs in binary executables.
By defining corresponding stochastic processes within the
input space of the program under test, we achieve an
effective new method for test case generation. Further,
we define an algorithm that dynamically controls diffu-
sivity of the defined Lévy flights depending on actual
quality of generated test cases. To achieve this, we con-
struct a measure of quality for new test cases that takes
already explored execution paths into account. During
fuzzing, the quality of actually generated test cases is con-
stantly forwarded to the test case generating Lévy flights.
High-quality test case generation with respect to path cov-
erage causes the Lévy flight to enter sub-diffusion and
focus its search on nearby inputs, whereas a low-quality
rating results in super-diffusion and expanding search
behavior. This feedback loop yields a fully self-adaptive
fuzzer. Inspired by the collective behavior of certain ani-
mal colonies, we aggregate multiple individual fuzzers to
a fuzzing swarm which is guided by simple rules to reveal
flexible, robust, decentralized, and self-organized behav-
ior. Our proposed algorithm is modular in the sense that
it allows integration of other fuzzing goals beyond code
coverage, which is subject to future work.
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