Open Access

Joint Source, Channel Coding, and Secrecy

EURASIP Journal on Information Security20072007:079048

DOI: 10.1155/2007/79048

Received: 1 March 2007

Accepted: 13 August 2007

Published: 20 September 2007


We introduce the concept of joint source coding, channel coding, and secrecy. In particular, we propose two practical joint schemes: the first one is based on error-correcting randomized arithmetic codes, while the second one employs turbo codes with compression, error protection, and securization capabilities. We provide simulation results on ideal binary data showing that the proposed schemes achieve satisfactory performance; they also eliminate the need for external compression and ciphering blocks with a significant potential computational advantage.


Authors’ Affiliations

Dipartimento di Elettronica, Politecnico di Torino


  1. Mohr A, Riskin E, Ladner R: Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction. IEEE Journal on Selected Areas in Communications 2000, 18(6):819-828. 10.1109/49.848236View ArticleGoogle Scholar
  2. Grangetto M, Cosman P, Olmo G: Joint source/channel coding and MAP decoding of arithmetic codes. IEEE Transactions on Communications 2005, 53(6):1007-1016. 10.1109/TCOMM.2005.849690View ArticleGoogle Scholar
  3. Garcia-Frias J, Zhao Y: Compression of binary memoryless sources using punctured turbo codes. IEEE Communications Letters 2002, 6(9):394-396. 10.1109/LCOMM.2002.803484View ArticleGoogle Scholar
  4. Grangetto M, Magli E, Olmo G: Multimedia selective encryption by means of randomized arithmetic coding. IEEE Transactions on Multimedia 2006, 8(5):905-917.View ArticleGoogle Scholar
  5. Wu C-P, Kuo C-CJ: Design of integrated multimedia compression and encryption systems. IEEE Transactions on Multimedia 2005, 7(5):828-839.View ArticleGoogle Scholar
  6. Johnson M, Ishwar P, Prabhakaran V, Schonberg D, Ramchandran K: On compressing encrypted data. IEEE Transactions on Signal Processing 2004, 52(10):2992-3006. 10.1109/TSP.2004.833860MathSciNetView ArticleGoogle Scholar
  7. McEliece RJ: A public-key cryptosystem based on algebraic coding theory. In DSN Progress Report 42-44. Jet Propulsion Laboratory, Pasadena, Calif, USA; 1978:114-116.Google Scholar
  8. Payandeh A, Ahmadian M, Reza Aref M: Adaptive secure channel coding based on punctured turbo codes. IEE Proceedings: Communications 2006, 153(2):313-316. 10.1049/ip-com:20050086View ArticleGoogle Scholar
  9. Xu L: A general encryption scheme based on MDS code. Proceedings IEEE International Symposium on Information Theory (ISIT '03), June-July 2003, Yokohama, Japan 19.Google Scholar
  10. Anderson JB, Mohan S: Source and Channel Coding. Kluwer Academic Publishers, Norwell, Mass, USA; 1991.MATHView ArticleGoogle Scholar
  11. Moo PW, Wu X: Resynchronization properties of arithmetic coding. Proceedings of IEEE International Conference on Image Processing (ICIP '99), October 1999, Kobe, Japan 2: 545-549.View ArticleGoogle Scholar
  12. Cleary JG, Irvine SA, Rinsma-Melchert I: On the insecurity of arithmetic coding. Computers and Security 1995, 14(2):167-180. 10.1016/0167-4048(95)97050-KView ArticleGoogle Scholar
  13. Kim H, Wen J, Villasenor JD: Secure arithmetic coding. IEEE Transactions on Signal Processing 2007, 55(5):2263-2272.MathSciNetView ArticleGoogle Scholar
  14. Ryan WE: A turbo code tutorial. 1997. Scholar
  15. Morelos-Zaragoza RH: The Art of Error Correcting Coding. 2nd edition. John Wiley & Sons, New York, NY, USA; 2006.View ArticleGoogle Scholar
  16. Rao TRN, Nam K-H: Private-key algebraic-code encryptions. IEEE Transactions on Information Theory 1989, 35(4):829-833. 10.1109/18.32159MATHMathSciNetView ArticleGoogle Scholar


© Magli et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.